START 3 Superfund Technical Assessment and Response Team 3 – Region 8 United States Environmental Protection Agency Contract No. EP-W-05-050 FIELD ACTIVITIES REPORT Mine Entry RED AND BONITA MINE SITE Silverton, San Juan County, Colorado TDD No. 1008-01 #### **December 14, 2012** #### In association with: Garry Struthers Associates, Inc. LT Environmental, Inc. OTIE TechLaw, Inc. Tetra Tech EMI Red and Bonita Mine Site – Field Activities Report Signature Page Revision: 0 Date: 12/2012 Page i of iii ### FIELD ACTIVITIES REPORT Mine Entry RED AND BONITA MINE SITE Silverton, San Juan County, Colorado EPA Contract No. EP-W-05-050 TDD No. 1008-01 > Prepared By: Cordel Schmidt, P.G. Project Manager URS Operating Services, Inc. 999 18th Street, Suite 900 Denver, CO 80202-2409 | Approved: | Steven Way, On-Scene Coordinator, EPA, Region 8 | 12-14-12 | |-----------|---|--------------| | Approved: | Charles W. Baker, START 3 Program Manager, UOS | 12-14-12 | | Approved: | Cordel Schmidt, Project Manager, START 3, UOS | (2 - 14 - 12 | This document has been prepared for the U.S. Environmental Protection Agency under Contract No. EP-W-05-050. The material contained herein is not to be disclosed to, discussed with, or made available to any person or persons for any reason without prior express approval of a responsible officer of the U.S. Environmental Protection Agency. In the interest of conserving natural resources, this document is printed on recycled paper and double-sided as appropriate. TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\FAR Mine Entry\Final\SIG-PAGE.doc Red and Bonita Mine Site – Field Activities Report Distribution List Revision: 0 Date: 12/2012 Page ii of iii #### **DISTRIBUTION LIST** #### U.S. ENVIRONMENTAL PROTECTION AGENCY Steven Way (2 copies) On-Scene Coordinator, EPA Region 8 #### URS OPERATING SERVICES, INC. Cordel Schmidt Project Manager, START 3, EPA Region 8 File (2 copies) START 3, EPA Region 8 ## FIELD ACTIVITIES REPORT Mine Entry ## RED AND BONITA MINE SITE Silverton, San Juan County, Colorado #### TABLE OF CONTENTS | | | | Page # | |-------|--|---|--------| | 1.0 | INT | RODUCTION | 1 | | 2.0 | BAC | CKGROUND | 1 | | 3.0 | 3.1
3.2
3.3
3.4
3.5
3.6 | LD ACTIVITIES Design and Work Considerations Adit Preparations Mine Adit Drainage Filtration Waste Disposal Mine Adit Inspection Sampling Activities | 2 | | 4.0 | FIEI | LD ACTIONS AND OBSERVATIONS | 5 | | 5.0 | REF | TERENCES | 8 | | FIGU | URES | | | | Figur | re 1 S | Site Location | | | TAB | LES | | | #### **APPENDICES** Table 1 Table 2 | Appendix A | Photolog | |------------|---| | Appendix B | Mine Entry Safety Plan | | Appendix C | Work Plan – Mine Adit Entry and Investigation | | Appendix D | Filtrate Disposal | | Appendix E | Laboratory Analytical Results | Sample Collection Summary, May 30 to June 14, 2012 Total Metals Sample Data Summary, May 30 to June 14, 2012 Red and Bonita Mine Site – Field Activities Report Revision: 0 Date: 12/2012 Page 1 of 15 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 1.0 INTRODUCTION URS Operating Services, Inc. (UOS), was tasked by the Environmental Protection Agency (EPA), under Superfund Technical Assessment and Response Team 3 (START) contract # EP-W-05-050, Technical Direction Document (TDD) No. 1008-01, to provide technical support to the Region 8 On-Scene Coordinator (OSC) at an abandoned mine site near Silverton, San Juan County, Colorado. Specifically, START was tasked to perform mine entry preparation activities, perform oversight activities during the performance of the mine entry activities, and to perform water sampling as appropriate. Field activities followed the applicable UOS Technical Standard Operating Procedures (TSOPs) and the Generic Quality Assurance Project Plan (UOS 2005a, b). Field activities associated with (pre/post) entry into the Red and Bonita mine adit were performed during May 30 to July 6, 2012 by Frontier Environmental Services Company (FES) of Arvada, Colorado. Adit entry to inspect the physical condition of the adit was performed on June 6, 2012 by State of Colorado Division of Reclamation, Mining, and Safety (DRMS) personnel. The Red and Bonita Mine site is located along Cement Creek, approximately 10 miles north of the town of Silverton, Colorado, centered near 37.897236° north latitude and -107.64382° west longitude (Figure 1). 2.0 BACKGROUND The Red and Bonita mine portal is approximately 0.5 mile north of Gladstone at 10,893 feet above mean sea level (AMSL). Road access is via County Road (CR) 110 from the town of Silverton to CR53 located at the abandoned town site of Gladstone. CR53 continues northward up the Cement Creek valley to other mines and also passes the base of the Red and Bonita mine (Figure 1). The mine is accessible during non- snow months of the year, typically late June through early October. Adit discharge has occurred through a collapsed portal for an unknown number of years until a new portal structure was installed in October 2011. Initial breach of the portal collapse into the adit occurred on September 15, 2011. The adit has been exposed to ambient conditions since then; however, the adit has been covered with a brattice cloth during the winter months to inhibit water from freezing inside the adit. Adit discharge flows overland across and approximately 200 feet down a mine dump face before being channelized at the toe of the dump. The channel directs flow into an iron bog en route to Cement Creek approximately 500 feet down gradient of the toe of the dump. Since 2009, adit discharge rates have been observed to range from 181 to 336 gallons per minute (gpm). The pH of portal discharge water typically averages 6.1standard units (SU) (UOS 2012). TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\FAR Mine Entry\Final\Final Text.doc 1816970 ED_000552_00030020-00005 Page 2 of 15 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 The mine is in the Cement Creek watershed, which is a component of the upper Animas River watershed. These watersheds were the focus of both large- and small-scale mining operations that flourished beginning in 1871 and lasting until as late as 1991 (U.S. Geological Survey [USGS] 2007). Photo documentation of adit entry activities is included in Appendix A. #### 3.0 FIELD ACTIVITIES #### 3.1 DESIGN AND WORK CONSIDERATIONS Preparation for field activities prior to mine adit entry by DRMS included acquiring supplies and equipment deemed necessary for safe entry into the adit and to manage water during the entry activity. Minimal information was available describing the conditions of this mine adit because it had not been entered for potentially 100 years; therefore, supply needs were estimated based on typical abandoned mine requirements. Conditions anticipated included stagnant air inside the adit based on prior air readings that indicated a depleted (19 percent) oxygen atmosphere. The mine entry crew was prepared for installation of 1,200 feet of ventilation piping to be used in conjunction with a mine ventilation fan capable of adding 15,000 cubic feet per minute (CFM) of outside air into the adit. Ventilation piping was to be added as necessary. Steel jacks and Douglas fir timber sets were available on site for support placement at weak areas inside the adit. Poly piping was available for directing mine discharge water from the adit, as well as other supplies and equipment to assist in the mine adit entry. Because of the unique nature of this endeavor, FES and DRMS worked collectively to develop a Mine Entry Safety Plan (Appendix B) for entry and exploration of the mine adit. START also developed a Work Plan – Mine Adit Entry and Investigation (Appendix C). #### 3.2 ADIT PREPARATIONS Preparations on site for entry included installing 6-inch PVC piping (for directing mine adit discharge water) from the top of the mine waste dump down the face to the base of the dump into the filter bag manifold system, placing equipment for the ventilation of the mine, and performing modifications to the portal door to pass a ventilation bag through the secured entrance door. The initial concept for reducing the disturbance of precipitates in the mine included placing an 8-inch diameter pipe on the floor of the adit to channel flow, and to build a temporary wooden platform over the top of the piping to support personnel while entering the mine. After several attempts to install these materials, it was determined that it was not sufficiently effective in reducing the amount of precipitated solids from being discharged to the filter bag system, and the level of TDD No. 1008-01 Red and Bonita Mine Site – Field Activities Report Revision: 0 Date: 12/2012 Page 3 of 15 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 effort and time required was significant. Ventilation bag was ultimately hung for approximately 220 feet into the adit and air was blown into the mine with a 10,000-CFM capacity fan before and during the entry events. 3.3 MINE ADIT DRAINAGE FILTRATION The approximately 300 gpm mine adit drainage required a water-handling approach that would allow uninhibited mine entry by personnel and equipment while also disallowing release of yellowboy sediments carried by the flowing water. Due to site access restriction by adjacent land owners and limited space at the mine property, it was not possible to install a settling pond sufficiently large to settle the suspended solids. Therefore, a process to remove disturbed sediment from the mine drainage as adit work was performed was put in place prior to mine entry activities. This process mimicked the
water filtration process used during removal of the portal collapse in 2011. Mine drainage water was filtered during adit entry activities via a filter bag manifold system located at the north toe of the mine dump adjacent to CR53 within the road right-of-way and bags placed on the culverts conveying the water under CR 53. The water was directed through 6-inch PVC piping to a filter bag manifold system where the flow volume could be manipulated at four filter bags via dedicated valving. An aluminum sulfate flocculent was added to the mine drainage water at a point on top of the dump, allowing for thorough mixing within the PVC piping prior to entry into the filter bags below. Flocculent was required to coagulate yellow boy fines into larger masses so as to not saturate the filter bag walls and cause a "blinding" effect that prevented water from draining through the bags. The "Dandy De-Watering Bag®" filter bags were sized 15x15 feet to enable handling after use. The bags were constructed of 8-ounce non-woven geotextile fabric and had pore openings of 0.0180 millimeters (mm) (18 micrometers [µm]) and were replaced as needed. In addition, filter bags were attached to the ditch culverts located on CR53 to provide backup filtration to the primary (manifold) filter system prior to release of mine drainage water to Cement Creek. 3.4 WASTE DISPOSAL Spent filter bags containing filtrate, including those stored at the site since 2011, were transported to the Bondad Landfill in Durango, Colorado, for disposal. Twenty cubic yards of bags/filtrate were delivered to the landfill on July 13, 2012. A scale was also used at the site to measure the TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\FAR Mine Entry\Final\Final Text.doc 1816970 ED_000552_00030020-00007 Page 4 of 15 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 tonnage of filtrate shipped to the landfill; 1 to 2 tons from Fall 2011 activities, and 5 to 6 tons from Summer 2012 activities. The waste profile form, non-hazardous waste shipping manifest, and filtrate laboratory analysis for disposal are included in Appendix D. The filtrate is not a Resource Conservation and Recovery Act (RCRA) hazardous waste, and analyses were performed to evaluate hazardous characteristics and other chemical hazards. It was necessary to remove the spent bags from the site because there is insufficient space for long-term storage of the bags at the dump site without significant site disturbance. #### 3.5 MINE ADIT INSPECTION Mine adit inspection was performed by DRMS mining personnel. Their work activities and observations are included under separate reporting from their office, currently unavailable for inclusion in this report. #### 3.6 SAMPLING ACTIVITIES Various sampling activities were performed to determine current conditions, and to establish background site conditions. Laboratory analytical results are included in Appendix E. Sampling locations included: | Mine drainage waters inside the mine portal; | |---| | Fracture water inflow into the mine adit at 275 feet inby; | | Mine drainage waters at the toe of the mine dump; | | Filter bag release water; | | Cement Creek water below the site area, but above the American Tunnel drainage | | confluence; | | Animas River water below the town of Silverton at the A72 sample location; | | Mine dump material; | | Red-colored yellowboy precipitate from the "weathered" mine dump face, | | "unweathered" red-colored yellowboy inside the adit, and recently deposited yellow- | | orange-colored yellowboy from the dump face and the ditch below the mine dump; and | | Solids precipitated from mine drainage filtering activities within filter bags. | Field observations for pH, specific conductivity, and temperature were also monitored for all water sampling. A summary of samples is included in Table 1. Page 5 of 15 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 4.0 FIELD ACTIONS AND OBSERVATIONS A crew of five personnel entered the mine adit on June 5 and 6 to hang vent pipe on the adit walls and to perform inspection of adit conditions. Only two men performed full entry; others were stationed as safety and assistance personnel. Entry timeframes were approximately 2 hours on June 5, and approximately 5 hours on June 6. Yellowboy precipitation that had accumulated on the adit floor 1 to 3 feet deep, as well as nearly waist-deep water in areas, inhibited activities to the extent of the mine entry of 680 feet inby. Yellowboy was problematic because as the entry teams travelled inward they had to wade through the yellowboy accumulation, which would become agitated and release into the mine adit drainage water that flows perennially at approximately 300 gpm, consequently loading the water filtration system outside the adit. Yellowboy accumulation was observed to thin to approximately 1 foot thick at 280 feet inby, and varied from 0.5 to 3 feet thick beyond that point. The adit investigation was terminated early due to the accumulation of yellowboy and the difficulties it caused with loading of the water filtration system. An additional adit entry will be required to investigate the adit in its entirety. A more effective filtration system will also be required for future mine entries. Adit conditions to 680 feet inby were reported to be very good with regard to rock competency. There were no support structures observed, with the exception of minor support near the mine entrance where the portal is installed into a ferricrete deposit. No support structures were added beyond the replaced portal in 2011. There was also none to very little mineralization observed on the adit walls by the entry crew, although a portion of the walls and floor were under water or covered with yellowboy. Lay-flat vent pipe was left intact in the mine adit from the portal to 200 feet inby. Mine adit drainage pH measurements have been observed to be fairly consistent, averaging 6.1 SU (19 measurements during 2009-2011) (UOS 2012), and 6.3 SU (12 measurements during summer 2012) (Table 1). However, a pH of 4.2 was observed on August 23, 2012, and is not fully understood at this time. Also, the typically dark red-colored yellowboy precipitate that was deposited on the dump face by the mine drainage (and the color observed inside the mine adit) was observed to have altered to a light orange to yellowish color in the early spring of 2012. The dark red and light orange to yellowish color variations were also observed on the mine adit walls during these activities. Yellowboy precipitate is known to exist in color variations of red, black, orange, and yellow. Three samples of yellowboy precipitate, including the red and yellow-orange color variations observed on site, were analyzed by a laboratory for Total Metals. The "unweathered" red-colored yellowboy from within the mine adit contained significantly more metals overall than both the yellow-orange colored TDD No. 1008-01 Red and Bonita Mine Site – Field Activities Report Revision: 0 Date: 12/2012 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 6 of 15 sample recently deposited on the dump face, and the "weathered" red-colored sample. All metals observations varied widely for each sample, with the exception of iron which was present at 46 percent within both red-colored samples, and was observed at 10 percent in the yellow-orange-colored sample, which may offer an explanation for the color differences. Flow rates in the Animas River below the town of Silverton pre-and post-mine entry were measured at 269,748 gpm (May 15) and 272,441 gpm (June 6), a less than 1 percent difference (USGS 2012). Flow within Cement Creek at the town of Silverton (June 6) was 27,379 gpm (USGS 2012), approximately 10 percent of the Animas River flow. Various (total) metals occurrences within the Animas River for those time periods are compared here; i.e., aluminum, copper, iron, lead, and zinc. Mercury was also investigated but was observed to not be included on the analyte list during pre-mine entry activities in the Animas River and Cement Creek (EPA 2012); therefore, full comparisons could not be made for those locations. A summary of the analytical data is included in Table 2. Mercury observations at the CR53 culvert location (CC03D) at the mine site did, however, increase from non-detect to as much as 0.667 parts per billion (ppb) in the mine water at that location during mine entry activities, and decreased to non-detect after the mine entry. Mercury was not detected at the town site of Gladstone (sample location CCGS located below the mine site) at the time of mine entry activities. As anticipated, the metals load within mine drainage water at the mine site (CR53 culvert sample location CC03D) increased upon mine adit entry. However, the metals content was observed to only be slightly greater than pre-entry conditions at the down gradient Cement Creek sample location CCGS (June 6), where metals were observed to increase by typically 10 to 20%. The average lead observation however, was observed to increase by a factor of 2.2. Mercury was non-detect. Analytical results for the comparison metals are summarized in Table 2. Laboratory analysis data sheets (Form 1's) for all metals are included in Appendix E. In addition to Total Metals analysis, two samples (CC03CA, CC03D), were also analyzed for Dissolved Metals, post entry sample on June 14. The dissolved metals observations generally mimic total metals results at those locations within acceptable limits; the exception being dissolved lead, which is significantly lower than total lead concentrations. When June 6 and May 15 sample data from the Animas River (location A72) are compared, the comparison metals are observed to be present in lesser amounts after the mine entry activities by 4%, 19%, 27%, 2 %, and 36 %,
respectively. Mercury was non-detect post-activities. Note that the June 6, 2012, Animas River comparison analysis included three samples spaced over a 1-hour time frame, with TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\FAR Mine Entry\Final\Final Text.doc 1816970 ED_000552_00030020-00010 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Red and Bonita Mine Site – Field Activities Report Revision: 0 Date: 12/2012 Page 7 of 15 the time of acquisition estimated to allow for potential contaminant influence, post-mine entry, to reach the sampling location. $TDD\ No.\ 1008-01\\ T.\START3\Red\ and\ Bonita\ Mine\Deliverables\FAR\ Mine\ Entry\Final\Final\ Text.doc$ Page 8 of 15 #### 5.0 REFERENCES U.S. Environmental Protection Agency (EPA). 2012. Scribe.net/upper animas sample data database. October, 2012. U.S. Geological Survey (USGS). 2007. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. Church, S. E., Guerard, P.V., and Finger, S.E. eds. USGS Professional Paper 1651. URS Operating Services, Inc. (UOS). 2012. "Water Quality Report – Four Mines Within Cement Creek Watershed," August 27, 2012. URS Operating Services, Inc. (UOS) 2005a. "Emergency Response Program Generic Quality Assurance Project Plan." June 13, 2005. URS Operating Services, Inc. (UOS). 2005b. "Technical Standard Operating Procedures for the Superfund Technical Assessment and Response Team (START), EPA Region 8." September 2005. United States Geologic Survey (USGS). 2012. "USGS Surface Water Daily Data for Colorado." http://waterdata.usgs.gov/nwis/dv?cb_00060=on&format=html&period=&begin_date=2012-05-10&end_date=2012-06-20&site_no=09359020&referred_module=sw 1816970 Date: 12/2012 Page 10 of 15 Table 1 Red and Bonita Mine Site - Sample Collection Summary, May 30 to June 14, 2012 | Date | Time | Laboratory Sample
Number | Analysis | Comment | pH
(SU) | Conductivity (µS) | Temperature (C) | |-----------|------|-----------------------------|--------------|--|------------|-------------------|-----------------| | 5/30/2012 | 1002 | cc03ca0530121002 | Total Metals | Mine drainage at portal. | 6.08 | 2,390 | 5.9 | | 5/30/2012 | 1030 | cc03cd0530121030 | Total Metals | Mine drainage at CR53 culvert outfall. | 6.65 | 2,260 | 7.2 | | 5/30/2012 | 1641 | cc03cd0530121641 | Total Metals | Mine drainage at CR53 culvert outfall. | 6.71 | 1,683 | 9.6 | | 5/30/2012 | 1704 | cc03ca0530121704 | Total Metals | Mine drainage at portal. | 6.07 | 1,783 | 5.9 | | 5/31/2012 | 1048 | | | Mine drainage at CR53 culvert outfall. | 6.04 | 1,680 | 8.1 | | 5/31/2012 | 1034 | | | Red and Bonita mine drainage at Cement Creek confluence. | 5.95 | 1,617 | 8.7 | | 5/31/2012 | 1100 | | | Mine drainage at portal. | 6.07 | 1,770 | 5.9 | | 5/31/2012 | 1652 | ppt010521121652 | Total Metals | Red colored yellowboy precipitate inside mine portal. | | | | | 6/1/2012 | 1130 | ppt020601121130 | Total Metals | Red colored yellowboy precipitate on top of dump face. | | | | | 6/1/2012 | 1135 | dump010601121135 | Total Metals | 6-aliquot sample down dump face (no precipitate). | | | | | 6/1/2012 | 1210 | ppt030601121210 | Total Metals | White colored precipitate from lower dump and CR53 ditch. | | | | | 6/1/2012 | 1305 | | | Mine drainage at portal. Dissolved oxygen = 59.3%, 7.36mg/L. | | | 6.1 | | 6/1/2012 | 1358 | | | CR53 culvert. Dissolved Oxygen = 70.7%, 8.24mg/L. | | | 8.7 | | 6/5/2012 | 825 | | | CR53 culvert. Dissolved Oxygen = 69.3%, 8.81mg/L. | 6.6 | 1,707 | 5.1 | | 6/5/2012 | 900 | | | Mine drainage at portal. Dissolved oxygen = 51.6%, 7.16mg/L. | 6.3 | 1,766 | 5.9 | TDD No. 1008-01 Date: 12/2012 Page 11 of 15 Table 1 Red and Bonita Mine Site - Sample Collection Summary, May 30 to June 14, 2012 | Date | Time | Laboratory Sample
Number | Analysis | Comment | pH
(SU) | Conductivity (µS) | Temperature (C) | |----------|------|-----------------------------|--------------|--|------------|-------------------|-----------------| | 6/5/2012 | 1355 | cc03ca0605121355 | Total Metals | Mine drainage at portal. | | | | | 6/5/2012 | 1519 | | | In adit, 60 feet inby. Ambient Oxygen = 19.7%, | | | | | 6/5/2012 | 1740 | cc03d0605121740 | Total Metals | Mine drainage at CR53 culvert outfall. | | | | | 6/6/2012 | 956 | | | Cement Creek above American Tunnel confluence. | 4.46 | 400 | 4.2 | | 6/6/2012 | 1004 | ccgs0606121004 | Total Metals | Cement Creek above American Tunnel confluence. | | | | | 6/6/2012 | 1023 | cc03d0606121023 | Total Metals | Red and Bonita mine drainage at CR53 culvert outfall. | 5.33 | 1,734 | 7.4 | | 6/6/2012 | 1043 | ccfb0606121043 | Total Metals | Release water from filter bag, manifold area at toe of dump. | 6.19 | 1,720 | 6.6 | | 6/6/2012 | 1255 | ccgs0606121255 | Total Metals | Cement Creek above American Tunnel confluence. | 4.26 | 436 | 10.7 | | 6/6/2012 | 1745 | a720606121745 | Total Metals | Animas River gauging station (A72) below Silverton. | 7.05 | 1,716 | 13.1 | | 6/6/2012 | 1825 | a720606121825 | Total Metals | Animas River gauging station (A72) below Silverton. | | | | | 6/6/2012 | 1845 | a720606121845 | Total Metals | Animas River gauging station (A72) below Silverton. | | | | | 6/7/2012 | 1100 | | | Cement Creek <i>below</i> confluence with Red and Bonita drainage. | 6.3 | 406 | 6.7 | | 6/7/2012 | 100 | | | Cement Creek <i>above</i> confluence with Red and Bonita drainage. | 6.48 | 196 | 6.6 | TDD No. 1008-01 Date: 12/2012 Page 12 of 15 Table 1 Red and Bonita Mine Site - Sample Collection Summary, May 30 to June 14, 2012 | Date | Time | Laboratory Sample
Number | Analysis | Comment | pH
(SU) | Conductivity (µS) | Temperature (C) | |-----------|------|-----------------------------|-------------------------------------|--|------------|-------------------|-----------------| | 6/7/2012 | 1100 | | | Red and Bonita mine drainage at Cement Creek confluence. | 6.27 | 1,598 | 9.6 | | 6/7/2012 | 1235 | | | Mine drainage at portal. Dissolved oxygen = 58.2%, 7.25mg/L. | 6.62 | 1,735 | 5.9 | | 6/7/2012 | 1430 | adit2750606121430 | Total Metals | Fracture flow into adit 275 to 283 feet inby. | | | | | 6/14/2012 | 1121 | ppt040614121121 | Total Metals | Precipitate from filter bag, manifold area at toe of dump. | | | | | 6/14/2012 | 1206 | cc03ca0614121206 | Total Metals
Dissolved
Metals | Mine drainage at portal. Dissolved oxygen = 58.3%, 7.26mg/L. | 6.37 | 1,575 | 5.9 | | 6/14/2012 | 1220 | cc03d0614121220 | Total Metals
Dissolved
Metals | CR53 culvert. Dissolved Oxygen = 70.1%, 8.19mg/L. | 6.9 | 1,557 | 8.5 | SU Standard Units $\begin{array}{ll} \mu S & \quad \text{Micro Seimens} \\ C & \quad \text{Degrees Centigrade} \end{array}$ -- Not applicable TDD No. 1008-01 Date: 12/2012 Page 13 of 15 Table 2 Total Metals Sample Data Summary* micrograms per liter (µg/L) | Sample Identifier | Sample Location | Sample Date | | | | | | | |-------------------|--|-------------|-----------|--------------------------|--------------------------|-----------|--|--| | | | 5/15/2012 | 5/30/2012 | 6/5/2012
(Mine Entry) | 6/6/2012
(Mine Entry) | 6/14/2012 | | | | ALUMINUM | | | | | | | | | | CC03CA | inside portal | | 4290/4280 | 17100 | | 4300 | | | | CC03D | CR53 culvert | | 4930/4470 | 21700 | 9560 | 4030 | | | | A72 | Animas River | 701 | | | 647/700/672 | | | | | ADIT275 | 275 feet inby adit | | | | 11500 | | | | | CCFB | filter bag release water | | | | 4670 | | | | | CCGS | Cement Ck at Gladstone, 20 ft above American Tunnel confl. | | | | 2160/2440 | | | | | CC18b | Cement Ck below North Fork, above American Tunnel | 2290 | | | | | | | | COPPER | | | | | | | | | | CC03CA | inside portal | | 8.49/7.07 | 214 | | 8.36 | | | | CC03D | CR53 culvert | | 8.81/9.53 | 348 | 140 | 11.4 | | | | A72 | Animas River | 12.2 | | | 9.56/9.96/9.99 | | | | | ADIT275 | 275 feet inby adit | | | | 17.5 | | | | | CCFB | filter bag release water | | | | 8.46 | | | | | CCGS | Cement Ck at Gladstone, 20 ft above American Tunnel confl. | | | | 157/155 | | | | | CC18b | Cement Ck below North Fork, above American Tunnel | 176 | | | | | | | TDD No. 1008-01 Date: 12/2012 Page 14 of 15 Table 2 Total Metals Sample Data Summary* micrograms per liter (µg/L) | Sample Identifier | Sample Location | Sample Date | | | | | | | |-------------------|--|---|-------------|--------------------------|--------------------------|-----------|--|--| | | | 5/15/2012 | 5/30/2012 | 6/5/2012
(Mine Entry) | 6/6/2012
(Mine Entry) | 6/14/2012 | | | | IRON | | The second se | | | | | | | | CC03CA | inside portal | | 89500/89000 | 470000 | | 91400 | | | | CC03D | CR53 culvert | | 92900/89800 | 691000 | 132000 | 85100 | | | | A72 | Animas River | 1280 | | | 914/950/935 | | | | | ADIT275 | 275 feet inby adit | | | | 94600 | | | | | CCFB | filter bag release water | | | | 88300 | | | | | CCGS | Cement Ck at Gladstone, 20 ft above American Tunnel confl. | | | | 6220/11200 | | | | | CC18b | Cement Ck below North Fork, above American Tunnel | 7910 | | | | | | | | LEAD | | | | | | | | | | CC03CA | inside portal | | 77.7/77.9 | 1410 | | 82.7 | | | | CC03D | CR53 culvert | | 109/93.9 | 2330 | 361 | 103 | | | | A72 | Animas River | 4.27 | | | 3.55/4.15/4.89 | | | | | ADIT275 | 275 feet inby adit | | | | 152 | | | | | CCFB | filter bag release water | | | | 39.1 | | | | | CCGS | Cement Ck at Gladstone, 20 ft above American Tunnel confl. | | | |
26.4/35.4 | | | | | CC18b | Cement Ck below North Fork, above American Tunnel | 14 | | | | | | | TDD No. 1008-01 Date: 12/2012 Page 15 of 15 Table 2 Total Metals Sample Data Summary* micrograms per liter (µg/L) | Sample Identifier | Sample Location | Sample Date | | | | | | | |-------------------|--|--------------|-------------|--------------------------|--------------------------|-----------|--|--| | | | 5/15/2012 | 5/30/2012 | 6/5/2012
(Mine Entry) | 6/6/2012
(Mine Entry) | 6/14/2012 | | | | MERCURY | | | | | | | | | | CC03CA | inside portal | | u/0.044 | 0.368 | | u | | | | CC03D | CR53 culvert | | u/u | 0.667 | 0.043 | u | | | | A72 | Animas River | not analyzed | | | u/u/u | | | | | ADIT275 | 275 feet inby adit | | | | u | | | | | CCFB | filter bag release water | | | | u | | | | | CCGS | Cement Ck at Gladstone, 20 ft above American Tunnel confl. | | | | u/u | | | | | CC18b | Cement Ck below North Fork, above American Tunnel | not analyzed | | | | | | | | ZINC | | | | | | | | | | CC03CA | inside portal | | 14000/14000 | 15800 | | 13900 | | | | CC03D | CR53 culvert | | 14200/14200 | 15400 | 14800 | 13100 | | | | A72 | Animas River | 292 | | | 186/186/181 | | | | | ADIT275 | 275 feet inby adit | | | | 15600 | | | | | CCFB | filter bag release water | | | | 13700 | | | | | CCGS | Cement Ck at Gladstone, 20 ft above American Tunnel confl. | | | | 2070/2460 | | | | | CC18b | Cement Ck below North Fork, above American Tunnel | 2980 | | | | | | | U Not detected at instrument detection limit. TDD No. 1008-01 ^{*}Data compendium from Appendix E. ### **APPENDIX A** Photolog PHOTO 1 5-31-12. Yellow-orange and red colored iron precipitate on dump face, flowing mine drainage. **PHOTO 2**6-6-12. Mine adit entry preparation by Colorado Division of Reclamation Mining and Safety. **PHOTO 3** 6-12-12. Mine portal after adit entry. **PHOTO 4**6-5-12. Temporary dam inside portal in attempt to control mine drainage. Yellowboy accumulation in foreground. **PHOTO 5** 6-6-12. View from top of mine dump toward manifolded filter bags. **PHOTO 6** 6-6-12. Aluminum sulfate flocculent added to pipe transmitting drainage to filter bags. 6-6-12. Filter bag located on top of dump near portal. Intermittently used. Draining to ditch on south side of mine dump. **PHOTO 8**6-6-12. Filter bag at base of mine dump. Note visibly clear release water. **PHOTO 9**5-31-12. Secondary filter bag placed on ditch culvert pipe on CR53 below mine. **PHOTO 10** 6-14-12. Instrumentation used to obtain water parameter observations. **PHOTO 11** 6-7-12. Temporary walkway inside mine adit as viewed from mine portal, placed above yellowboy accumulation. Note that adit is passing through ferricrete deposit, photo top. **PHOTO 12** 6-12-12. Securing collapsible air duct in adit approximately 100 feet inby. Note that adit appears competent, no required supports through andesitic rock. TDD No. 1008-01 PHOTO 13 6-12-12. Adit left rib at approximately 60 feet inby. Note yellowboy stain and accumulation near (current) water line. PHOTO 14 6-12-12. Adit back at approximately 60 feet inby. Note competent andesitic rock and fracture planes. PHOTO 156-12-12. Yellowboy accumulation in adit at (current) water line, approximately 50 feet inby. Note red, orange, yellow colors. **PHOTO 16** 6-14-12. Sampling clay-like filtrate from filter bag. **PHOTO 17** 7-13-12. Loading spent filter bags for landfill disposal. **PHOTO 18** 7-13-12. KoirLog erosion control barriers placed at culvert outfalls. Two culverts under CR53 below the Red & Bonita mine. Overland flow is toward Cement Creek. **PHOTO 19** 7-13-12. Mine portal area, post adit entry activities. PHOTO 207-13-12. Mine portal area, post adit entry activities. Water discharge flowing over top of mine dump. 7-13-12. Red & Bonita mine, post adit entry activities. Mine drainage over dump face, drain pipe to manifolded filter bag area left in place for future use. ### **APPENDIX B** **Mine Entry Safety Plan** ## Red and Bonita Mine Entry Safety Plan May 27, 2012 Prepared by: Allen Sorenson Colorado Inactive Mine Reclamation Program The Red and Bonita underground mine workings along Cement Creek north of the town of Silverton Colorado will be entered June 4-8, 2012 to conduct surveys and collect water samples. Work under this plan will include safety measures necessary to support the primary mission(s). Underground activities may include ventilation, scaling, shoring, erection of safety barricades or warning tape, removal of obstacles that can be moved by hand, etc. This site-specific safety plan is limited to the entry of horizontal or slightly inclining adit features of the Red and Bonita mine. <u>Exclusion:</u> The scope of this safety plan does <u>not</u> include entry into steeply inclined or vertical openings, from either above or below. This plan does <u>not</u> cover substantial mine rehabilitation activities such as mechanized mucking, major debris removal, or rock bolting. Should conditions be such as to require any these measures, a supplemental safety analysis and revision to this safety plan will be required. Confined Space Issues: The mine workings at the Red and Bonita mine facility have not been inspected by competent persons or maintained for decades. This safety plan for survey and sampling support work in specific mine areas will provide measures which generally correspond to and are substantively equivalent to OSHA Confined Space requirements. Variations from OSHA Confined Space protocols may be made with consideration of specific site conditions and as adapted to consider the large distances and specific geometry of the mine adit layout as well as industry practices and regulations more specifically developed to address underground mine conditions, including MSHA regulations. Areas which have been inspected and cleared of hazards may be downgraded from OSHA Confined Space-equivalent protocols, following additional reconnaissance. Other Standards: Provisions of MSHA (40 CFR Parts 48, 56 and 57) standards pertaining to underground hardrock mining are not legally applicable to an inactive mine site, but in many cases are more detailed and fit site conditions better than OSHA regulations. MSHA standards will be regarded as supplemental references for this work, and safety measures customary to underground work will be followed. OSHA Underground Construction standards (29 CFR 1926.800) may be applicable to any underground work other than simple observation, measurement, etc. This may include work to correct hazards, obtain samples of geologic material larger than hand specimens, etc. # 1) Analysis of Potential Hazards / Mitigation Measures / Limiting Conditions The following hazards are considered relatively high probability risks which need analysis and mitigation. There may be the possibility of lower probability or unforeseen risks, and this analysis does not cover all possible hazards. #### 2.1 Raise / Winze / Decline Work Hazards The adit levels to be explored may have connections to upper and lower levels. Initial reconnaissance will be deliberate with continuous observation and probing to determine the locations of raises, winzes, and declines, if any exist. Hazards identified during initial reconnaissance will be marked or cordoned off, and will be avoided during the conduct of the work. #### 2.2 Falling Rock or other debris The first person in the lead during each entry will evaluate the hazards and examine the geologic conditions and the condition of supports. Indications of air-slacked ground, rotten or collapsing timber sets or new rockfalls are indications of potential hazards. All entrants will maintain continuous awareness of roof and rib conditions. Any condition indicating that the adit is seriously unstable, or other debris hazards which cannot be removed or mitigated, will constitute grounds for withdrawal under this plan and the development of a supplemental plan. #### 2.3 Atmospheric Hazards Oxygen Deficiency: The adit workings are known to have an oxygen-deficient atmosphere. The adit will be ventilated by forced air as necessary throughout the conduct of the work. The adequacy of at least 19.5% oxygen will be tested before entry, and a continuous multi-gas alarm, which includes oxygen, will be carried at all times by at least the lead person underground. Any persistent alarm will be grounds for withdrawal. If the oxygen content is below 19.5% or at the first sign of symptoms from bad air inhalation (i.e., headache, dizziness, slurred speech, nausea, etc.) in any team member the reconnaissance will halt and the crew will leave the mine immediately. Continuous oxygen level meters occasionally become unreliable at high elevations. The oxygen meter should be re-set for fresh air at the work area elevation. The initial entry to any unventilated adit will not be performed on a day with a rapidly falling barometric pressure, to reduce the likelihood of hazardous gases emanating from old workings. The exploration team will be cognizant of the possibility of stratified air in dead ended or shaft workings, with possible concentrations of Carbon Dioxide (CO₂) along the adit floor. Although not poisonous, CO₂ kills by excluding oxygen. CO₂ tends to accumulate in low spaces without air movement because it is 1.5 times heavier than air. Any areas with oxygen insufficiency detected will be marked on the mine map by the reconnaissance team, avoided, and marked off with "danger" tape. <u>Explosive gases</u>: Methane accumulations are <u>not likely</u> in the Red and Bonita mine, and methane was not historically reported in the district. Methane is explosive in normal air mixtures within the 5.5% to 15% range of concentration. Methane is lighter than air, with specific gravity of 0.555. As a result, it tends to accumulate in high places in areas of poor ventilation. Methane concentrations should be tested in any areas which have little or no
air movement. This testing should be performed as high up as possible, preferably within 1 foot of the mine roof. A lift device may be necessary to perform these tests. MSHA standards for gassy or potentially gassy mines will be used as a limiting condition of operation. Any areas with methane concentrations in excess of 1% will not be explored further. If any area is found to have in excess of 2%, withdrawal from the entire mine will be indicated until ventilation can be provided or natural ventilation improved by opening additional doors. <u>Toxic Gases</u>: There is a potential risk of hydrogen sulfide (H_2S) due to liberation from standing pools of water. H_2S can be recognized as the smell of rotten eggs, although at concentrations over 300 ppm the nasal receptors are quickly saturated and the smell will seem to disappear within a few breaths. H_2S will be tested and any measurement over 20 ppm will be grounds for withdrawal. There is some possibility of Carbon Monoxide (CO). especially if diesel powered equipment is operated in a poorly ventilated space. CO will be continuously monitored while mobile equipment is being operated. A condition of more than 10 ppm will be grounds for withdrawal or stoppage of the source emitting exhaust. <u>Dust:</u> Some dust may be generated from rockfall as a result of scaling activities. For the reconnaissance and sampling phase, this will be controlled by keeping the activity to a minimum. Persons exposed to dust hazards shall carry a respirator, which shall be worn when excessive dust is observed. #### 2.4 Explosives Old explosives are frequently encountered in inactive mines. There is a possibility that some residual unexploded explosives could be encountered in the mine ribs or other areas, as a result of "bootlegs" or other misfires. If explosives are observed, the location will be noted and avoided, and the underground team will withdraw. Any evaluation or handling of old explosives will be only by a Colorado Licensed blaster or a person with Explosive Ordnance Disposal (EOD) training, and then only after a supplemental plan is developed for either countercharging, inerting or removal to another location. #### 2.5 Chemical Hazards In accordance with HAZCOM standards, a jobsite Material Safety Data Sheet (MSDS) book, containing MSDSs for any chemicals in use, will be provided onsite by any entity bringing chemicals to the site. # 2.6 Inundation / Engulfment The reconnaissance team will be cognizant of the possibility of impounded water, especially behind roof fall areas. Any potential impoundment will be avoided and cordoned off, pending further evaluation and supplemental planning. Any areas which appear subject to inundation risk will be grounds for team withdrawal or exclusion from entry when recognized. Ponds of standing water may exist: these will be probed for depth before entering. # 2.8 Trip / Fall / Snag The highest probability safety risk is tripping and falling on material underfoot, and snagging on projecting objects. Persons effecting the underground operations are to move slowly and cautiously, to allow time for recognition of these hazards. #### 2.9 Molds and Slimes The Red and Bonita mine is damp to wet. Old mines frequently contain significant amounts of molds, fungus, and slimes. If these substances are encountered, handling or contact should be avoided if possible. If not possible to avoid, appropriate respiratory protection, and gloves should be used. # 2.10 Animal hazards / Issues Hantavirus is potentially present at the Red and Bonita mine. Any visible rodent nests or droppings are to be avoided. If that is not possible, they are to be sprayed with a bleach and water solution and a respirator should be worn if it is necessary to disturb or move these materials. No bats have been observed in the Red and Bonita mine workings, and the present closure excludes bats. Large mammals are unlikely. Any evidence of bear or lion scat or bones of prey is grounds for withdrawal, notification of the Division of Wildlife, and supplemental plan development. # 2.11 Fire protection Underground diesel powered equipment and electrical systems pose a fire hazard. It is unlikely that dry combustible material will be present in the Red and Bonita mine. A minimum of one fire extinguisher of a minimum rating of 10A-20BC will be will be available on site. # 2.12 Electrical Electrical installation for this project will be primarily surface facilities. Some underground lighting may be installed. Electrical installation will be inspected by a licensed electrician prior to use of the ventilation fan(s). # 2.13 Mobile Equipment The only mobile equipment used will be surface trucks heavy machinery. Personnel who will use mobile equipment will be trained in its use, and shall be familiar with all systems and controls, and properly licensed. Pre-operational examination of each piece of mobile equipment will be made by its operator prior to use each day. In the event that critical safety deficiencies are noted, they shall be corrected before the machine is used, or the machine shall be tagged out of service. # 2.14 Hypothermia Be aware of the symptoms of hypothermia - Shivering - Mental confusion, followed by: - Violent shivering - Poor coordination - Slow awkward movement All of these are further complicated if there is low oxygen. Any team members who feel like they are cold to the point of discomfort will exit the mine and will not re-enter until re-geared with sufficient clothing and PPE. Any team member exhibiting hypothermia will be assisted from the mine and be given medical treatment. # 2) General Measures to Address Risks # 3.1 Training # 3.1.1 General Training Persons not having prior MSHA 40-hour underground mine training will be given a hazard briefing, self-rescuer orientation and any relevant task-specific training prior to going underground. Personnel working on this project will also receive site specific health and safety training on the known and potential hazards present in the project area. Training should include review of this Red and Bonita Mine Entry Safety Plan and information on the previous investigations performed in this area to identify potentially hazardous situations. The training is to be conducted prior to the initial work assignment. Upon completion of the training, employees must have acquired the understanding, knowledge, and skills necessary for the safe performance of their duties. In addition, training is required when the job duties change, there is a change in the Mine Entry Safety Plan program or a new hazard is identified, or when an employee's job performance shows deficiencies. # 3.1.2 Task Training Personnel will be trained for their specific job duties. Training will be conducted for the Mine Entry Team members, Portal Attendant, and Mine Entry Supervisor. The specific job duties are given below. # 3.1.2.1 Mine Entry Team Member Duties - Know expected hazards, including mode of exposure, signs and symptoms, and consequences of exposure. - Know the proper use of personal protective equipment (PPE). - Review available information about the mine and develop a route plan in coordination with Portal Attendant. - Maintain communication with portal attendant. Let the Portal Attendant know about any changes in the reconnaissance route. - Exit the mine as soon as possible when ordered by an authorized person, when a prohibited condition is recognized, or when an automatic alarm is activated. - Alert the attendant when a prohibited condition exists. - Use monitoring equipment as specified in this plan. - Know and comply with this Safety Plan. # 3.1.2.2 Portal Attendant's Duties - Remain outside mine portal at all times when persons are underground. - Know existing and potential hazards including mode of exposure, signs and symptoms, and consequences of exposure. - Review available information about the mine and be aware of the route plan in coordination with the Mine Entry Team and routine entrants. - Maintain communication and keep an accurate count of mine entrants. Keep a log of communications with the Mine Entry Team. - Keep the last reported location of the Mine Entry Team marked on the mine map. - Know procedures for evacuating the mine when a prohibited condition exists, when a worker shows signs of physiological effects of hazard exposure, when an emergency outside the mine exists, and when the attendant cannot effectively and safely perform required duties. - Summon emergency rescue services, if required. - Preventing unauthorized entry into the mine and notifying entry supervisor if unauthorized entry occurs. - Perform no other duties that interfere with the attendant's primary duties. - Know and comply with this Safety Plan. # 3.1.2.3 Mine Entry Supervisor Duties - Know existing and potential hazards including mode of exposure, signs and symptoms, and consequences of exposure. - Verify emergency plans and specified entry conditions such as permits, tests, procedures, and equipment before allowing entry. - Know and follow Procedures for terminating entry and cancel permits when entry operations are completed or if new hazards are identified. - Verify the availability of rescue services and means for summoning them are operational. - Know and follow Procedures for removing unauthorized entrants from mine. - Ensure that entry operations are consistent with permit and acceptable entry conditions are maintained. - Assess hazards and revise permit requirements as appropriate. - Know and comply with this Safety Plan # 3.2 Equipment # 3.2.1 Personal Protective Equipment All persons involved in the scope of work covered under this plan area wear a minimum of modified "Level D" personal protective equipment, as follows: <u>Safety glasses</u> should be worn at all times underground, except when fogging conditions or dripping water effects on the glasses would present a greater hazard due to reduced visibility. Safety glasses will
be used at all times during activities which pose a high risk, (i.e.: when driving survey spads or taking rock samples with a geologist's hammer, etc). <u>Hard Hat</u>: an ANSI-rated hard hat shall be work at all times while underground, and at all times on surface where hazards from falling objects exist. Boots: Sturdy boots will be a minimum standard for all work. ANSI-rated hard toe boots are recommended at all times while underground and during surface construction activities. <u>Clothing</u>: High visibility clothing will be required at all times when persons are working within 50 feet of mobile construction machinery. Additionally, the mine entry team will wear high visibility vests with reflective material on front and rear, or other high-visibility outermost clothing. To provide skin protection, appropriate protective clothing such as coveralls, gloves, and water proof clothing as needed shall be worn or at hand at all times while underground. Water in the mine may be acidic. Skin and eye contact with the water must be prevented. If contact with water occurs, affected areas must be flushed with clean water and medical attention sought as needed. <u>Hearing protection</u> must be worn if the noise level appears to approach 85 dBA. As a reference, when conversation becomes difficult at a distance of a few feet, the decibel levels may be greater than 85 dBA. Dust mask may be required for any scaling or debris removal activities. #### 3.2.2 Illumination Primary illumination while underground will be with a miner's lamp. Each team member will be equipped with a lamp, and each team will carry one back-up light, such as a flashlight. #### 3.2.3 Communication There will be a Portal Attendant stationed near the entry portal while the team is underground that will make emergency notifications if the team does not emerge from the underground workings at the appointed time. Under no circumstances will the person serving as portal attendant enter the mine. The Mine Entry Teams will work out a system of communication with the Portal Attendant. Each underground team and the portal attendant will carry a timepiece. A site map and driving directions are included in Appendix C. The coordinates for the site are: Latitude 37.89722 Longitude -107.64367 All emergency services, including Sheriff, Fire, Ambulance and Mine Rescue, within the area of the Red and Bonita Mine are coordinated through the San Juan County Sheriff's office. Their dispatch phone number is San Juan County Sheriff 970 387-5531 911 Cellular phone will be tested for signal. If cellular service is not available onsite, the nearest location where cell service can be obtained will be predetermined before initiation of underground operations. # Other Notification Phone Numbers in event of emergency: # San Juan Mine Rescue Cooperative Primary: Jess Fulbright (W) 970-865-2415 x. 24 (C) 970 -428-7001 (H) 970- 864-2116 Alternate: Tom Bird (W) 970-385- 4528 (C) 970 -259-9877 (H) 970- 533-7260 Location of Rescue Station: Ridgeway, CO Steve Renner (CIMRP) Cell 970-250-5478 Jeff Graves (CIMRP) Cell 303-618-0850 In case of serious medical emergency, **Flight for Life** may be required. Their direct phone number is: Flight for Life: 303.629.3900 If air evacuation is required, the general landing zone requirements are as follows: - 60 ft x 60 ft. square (100 ft. x 100 ft. at night) - Determine wind speed and direction, communicate to dispatch; - Less than 10 degrees slope; - Area free from obstacles; - Note and communicate location of LZ and any nearby obstacles. # Helicopter Safety - Never approach Helicopter with blades turning (unless with pilot approval); - Approach only from front or side; - Avoid tail at all times; - No running, smoking, or operation of helicopter doors or handles. San Juan County Sheriff's Dispatch can also call Flight for Life, and in all cases should be advised of any emergency. Local EMS may be required to stabilize an injured person before transport to a trauma center by Flight for Life. # 3.3 Work Procedures # 3.3.1 Reconnaissance Advancement Protocol (not all applicable to routine sampling entries) The Mine Entry Team will advance into the mine, with the Portal Attendant remaining near the portal area. A visual inspection of the mine workings ahead of advancement will be conducted to identify safety hazards. The roof and ribs will be sounded as necessary to evaluate stability. Scaling shall be performed as required. Any new information obtained during the mine entry will be communicated to the Portal Attendant, who will maintain a logbook of all communications and the location of the Entry Team. Testing shall be conducted for hazardous atmospheres continuously during advancement and occupancy of the underground workings at the Red and Bonita Mine site. The testing will be done by a qualified person. The worker shall not be exposed to concentrations of contaminants in excess of those specified in 29 CFR Part 1910 Subpart Z. If the mine workings are vacated for any significant period of time, the atmosphere shall be re-tested and general safety conditions re-examined. At a minimum, there will be an examination by a qualified experienced miner prior to each day's work underground. # 3.3.2 Rescue Capability The following emergency response measures shall be reviewed by the PIC (or designee) to brief personnel on quickly and safely exiting the area in an emergency. A list of emergency phone numbers shall be available and maintained by the PIC, who will coordinate emergency transportation and medical care. In the event that specialized mine rescue capability is required, onsite personnel will work in conjunction with the San Juan Mine rescue team to affect rescue as required. # 3.3.3 Portal Attendant There will be a responsible person at the portal area at all times when persons are underground. The Portal Attendant will be equipped with a means to summon emergency services without leaving their post (eg: cellular or satellite phone). # 3.3.4 Tag/in - Tag/out system A log system will be established and maintained to ensure that there is a positive means to track the number and identity of all persons underground. The Portal Attendant will maintain this record in writing. # 3.3.5 Indoctrination All persons performing work in connection with this work plan will be trained in the provisions of this plan, and shall sign a certification that they have read and understood and will comply with the plan during their work. The certification page at the back of this copy of the Red and Bonita Mine Entry Plan should be detached and signed. These certifications will be collected and kept on file. # 3.3.6 Map Review and Planning Prior to entering the mine the mine map will be reviewed by all personnel prior to underground entry. A copy of the map will be in the possession of the Portal Attendant. The map will be updated as information is collected through mine reconnaissance. An initial plan of advancement will be developed and communicated between the Portal Attendant prior to the initial entry. Any changes to the advancement plan will be communicated to the Portal Attendant. # 3.3.7 Coordination of Entry Operations with Other Contractors If any other contractors or employees of another employer are working underground the affected employers must coordinate entry operations to ensure the safety of all affected employees. # 3.3.8 Measures to Prevent Unauthorized Entry # 3.3.8 1 Barriers & Signage: The Portal Attendant will watch the road and be alert for any persons attempting to gain access to the mine work area. Entrance to the mine will be denied except as provided under this plan, while persons are underground during the reconnaissance and sampling activity. # 3.3.9 Isolation and Lockout/Tagout All energy sources must be controlled to prevent the unexpected start-up or release of stored energy, which may cause injury to personnel. Energy sources in general include electrical, mechanical, hydraulics, pneumatic, chemical, and thermal. Lock Out and Tag out procedures will be utilized, where applicable. Energy sources may include: electrical, mechanical, hydraulics, pneumatic, chemical, radioactive and thermal. # 3.3.10 Emergency Recognition Emergency conditions are considered to exist if: - Any worker is involved in an accident or experiences any adverse health effects or symptoms of exposure while on site. - A condition is discovered that suggests the existence of a situation more hazardous than anticipated. In the event that any site personnel experiences an accident, adverse health effects or symptoms of exposure while on site, the entire crew working in that area will immediately halt work and act according to the instructions provided by the Mine Entry Supervisor. The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated will result in the evacuation of the work crew and reevaluation of the hazard and the level of protection by the Mine Entry Supervisor. # Appendix A # **Underground Mine Entry Permit** | LOCATION AND DESCRI | PTION OF UNDERG | GROUND AREA | | | DATE | |--|-------------------------------------|---|-------------------------------------|--|--| | | | | | | | | PURPOSE OF ENTRY | | | | | TIME
m. | | Entry Supervisor (Name): | | Sign | ature: | | EXPIRATION | | Authorized Entrants: | | | | | m. | | Entry Supervisor: | | Portal Attend | | | | | Entry Supervisor. | HAZARDS PRESE | NT IN THIS CONFI | | | | | POTENTIAL HAZARD | YES | POTENTIAL | YES | POTENTIAL | | | | | HAZARD | | HAZARD | | | | | Mobile Equipment
(pre-op check) | | Toxic Gasses or
Vapors (CO, H ₂ S) | Initial Reading | | Oxygen Deficiency
(<19.5% or > 23.5%) | Initial Reading | | | Flammable Gases
or Vapors (>10%
LEL) |
Initial Reading | | Unstable rock on roof or ribs | | Skin Hazards
(sharp rock) | | Other: | | | CONTROL OF
HAZARDS,
PREPARATION FOR
ENTRY | PRESENT
(INTITIALIZE
FOR YES) | CONTROL | PRESENT
(INTITIALIZE
FOR YES) | CONTROLS | PRESENT
(INTITIALIZE
FOR YES) | | 1: ISOLATION | | Communication | | | | | Area Secure from
Unauthorized Entry | | Equipment from UG to surface | | | | | Space Ventilated or | | Lighting | | | | | Acceptable Levels | | Lighting | | | | | Acceptable Levels Energy sources Locked Out | | Protective
Clothing | | Lifelines | | | Tag-In System | | 3. RESCUE
EQUIPMENT | | Other Controls | | | 2 FOLIDIAES VI | | First Aid Kit | | Signage | | | 2. EQUIPMENT: | | | | 4. TRAINING: All Personnel Trained, | | | PPE | | | | Informed of Hazards | | | | | Stokes Litter | | | | | Gas Monitor(s) | | Communication from surface to rescue services | | | | | | | | | | | | | | | | | | The Supervisor, Team members and Portal Attendant shall determine the need for periodic identification and re-evaluation of the hazards based on possible changes in activities in the mine, or other physical and/or environmental conditions, which could adversely affect the personnel underground. Appendix B - Mine Map - NOTE: Information on the extent of Red and Bonita Workings is Extremely Limited # Appendix C - Site Location Map Red and Bonita Mine Area # **Driving Directions** From the Town of Silverton, take State Highway 110 north approximately 6.4 miles to County Road 52. Take County Road 52 across Cement Creek and proceed north along the creek to the Red and Bonita Mine. # **CERTIFICATION** I certify that I have read and understood and will comply with the Red and Bonita Mine Entry Safety Plan during my work on the site. Any questions I have about how this plan affects the conduct of my duties have been fully explained to me and I understand my responsibilities and the related safety requirements set forth in the Safety Plan. | Signed: | Date: | |-------------------------|-------| | | | | Printed Name: | | | | | | Company or Organization | | # **APPENDIX C** Work Plan – Mine Adit Entry and Investigation # START 3 Superfund Technical Assessment and Response Team 3 – Region 8 United States Environmental Protection Agency Contract No. EP-W-05-050 **WORK PLAN Mine Adit Entry and Investigation** RED and BONITA MINE Silverton, San Juan County, Colorado TDD No. 1008-01 # May 31, 2012 # In association with: Garry Struthers Associates, Inc. LT Environmental, Inc. TechLaw, Inc. Tetra Tech EMI TN & Associates, Inc. URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Red and Bonita Adit Entry and Investigation – Work Plan Signature Page Revision: 0 Date: 05/2012 Page i of iv # WORK PLAN for Mine Adit Entry and Investigation RED AND BONITA MINE Silverton, San Juan County, Colorado EPA Contract No. EP-W-05-050 TDD No. 1008-01 > Prepared By: Cordel Schmidt, P.G. Project Manager URS Operating Services, Inc. 999 18th Street, Suite 900 Denver, CO 80202-2409 | Approved: | Date: Steven Way, On-Scene Coordinator, EPA, Region 8 | |-----------|---| | | | | Approved: | Date: Charles W. Baker, START 3 Program Manager, UOS | | Approved: | Date: Cordel Schmidt, Project Manager, START 3, UOS | This document has been prepared for the U.S. Environmental Protection Agency under Contract No. EP-W-05-050. The material contained herein is not to be disclosed to, discussed with h, or made available to any person or persons for any reason without prior express approval of a responsible officer of the U.S. Environmental Protection Agency. In the interest of conserving natural resources, this document is printed on recycled paper and double-sided as appropriate. TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5 2012\Draft\SIG-PAGE.doc Red and Bonita Adit Entry and Investigation – Work Plan Distribution List Revision: 0 Date: 05/2012 Page ii of iv # **DISTRIBUTION LIST** # U.S. ENVIRONMENTAL PROTECTION AGENCY Steven Way (2 copies) On-Scene Coordinator, EPA Region 8 # URS OPERATING SERVICES, INC. Cordel Schmidt Project Manager, START 3, EPA Region 8 File (2 copies) START 3, EPA Region 8 # Draft WORK PLAN FOR MINE ADIT ENTRY and INVESTIGATION # Red and Bonita Mine Silverton, San Juan County, Colorado # TABLE OF CONTENTS | | | | PAGE # | |------|---|---|----------------| | DIST | RIBUT | E PAGE
TON LIST
CONTENTS | i
ii
iii | | 1.0 | INTE | RODUCTION | 1 | | 2.0 | 2.1
2.2
2.3 | KGROUND INFORMATION Site Location and Description Site Access Geology | 1 | | 3.0 | OBJ I 3.1 3.2 | ECTIVES Mine Entry Objectives Sampling Design and Data Quality Objectives 3.2.1 Identifying the Decision Inputs 3.2.2 Defining the Study Boundaries | 3 | | 4.0 | CON
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8 | Schedule Safety Roles and Responsibilities Mine Adit Access Base Flow Water Handling and Sediment Control Adit Stabilization Mine Entry and Investigation Final Site Base Flow Water Handling | 5 | | 5.0 | SAM 5.1 5.2 5.3 5.4 5.5 | Sample Locations Sampling Methods Field Quality Control Procedures Laboratory Analytical Parameters Chain of Custody | 9 | # **TABLE OF CONTENTS, continued** | | | | | PAGE # | |-----|------------|--------|--------------------|--------| | 6.0 | DATA Q | QUAL | ITY EVALUATION | 11 | | | 6.1 I | Data Q | Quality Indicators | | | | 6 | 5.1.1 | Bias | | | | ϵ | 5.1.2 | Sensitivity | | | | ϵ | 5.1.3 | Precision | | | | ϵ | 5.1.4 | Representativeness | | | | ϵ | 5.1.5 | Completeness | | | | 6 | 5.1.6 | Comparability | | | 7.0 | DELIVE | ERAB | LES | 13 | | 8.0 | LIST OI | F REF | FERENCES | 15 | # **FIGURES** | Figure 1 | Site Location | |----------|---------------| | rigure i | Site Location | Figure 2 1899 Mine Adit Map # **TABLES** Table 2 Sample Plan Checklist Table 3 Sample Container Types, Volumes, and Sample Preservation Page 1 of 20 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 # 1.0 <u>INTRODUCTION</u> URS Operating Services, Inc. (UOS), was tasked by the Environmental Protection Agency (EPA), under Superfund Technical Assessment and Response Team 3 (START) contract # EP-W-05-050, Technical Direction Document (TDD) No. 1008-01, to provide technical support to the Region 8 On-Scene Coordinator (OSC) at an abandoned mine site near Silverton, San Juan County, Colorado. Specifically, START was tasked to provide support at the Red and Bonita mine to allow entry into the adit to perform geologic investigations and sampling. This Work Plan is designed to guide field operations and has been prepared with assistance from Frontier Environmental Services, Inc., who will be assisting in the performance of work tasks. Personnel from the Colorado Division of Reclamation, Mining & Safety (DRMS) will provide technical expertise for mine entries and will perform the mine investigation. A separate Health and Safety Plan was developed by DRMS for the adit entry activity. The investigation activities are estimated to require approximately 3 days. # 2.0 BACKGROUND INFORMATION #### 2.1 SITE LOCATION AND DESCRIPTION The Red and Bonita Mine site is located along Cement Creek, approximately 10 miles north of the town of Silverton, Colorado, centered near 37.897236° north latitude and -107.64382° west longitude (Figure 1). The Red and Bonita Mine is in the Cement Creek watershed, which is a component of the upper Animas River watershed. These watersheds were the focus of both large-and small-scale mining operations that flourished beginning in 1871 and continued until as late as 1991 (U.S. Geological Survey [USGS] 2007). The Red and Bonita mine site consists of a flowing mine adit, approximately 1.25 acres of waste rock and suspected tailings material, and accompanying debris including the site of a former smelter on the north side of the mine dump. The mine is located on the west-facing slope, east of Cement Creek, approximately 200 vertical feet above the creek. The slope of the mountainside on which the mine is located has an average 44 percent grade (i.e., a 23.75 degree slope because 100 percent grade equals 45 degrees). The talus slope immediately above the mine was measured by START to be 81 percent (39 degrees). The adit at the Red and Bonita Mine had been collapsed/covered for an unknown number of years and was excavated in 2011 when a new mine portal was installed. The mine is releasing acid mine drainage (AMD) at a rate of approximately 300 gallons per minute (gpm). TDD No. 1008-01 $T: START3 \ Red \ and \ Bonita \ Mine \ Deliverables \ Work \ Plan \ Mine \ Adit \ Entry \ and \ Rehabilitation \ 5_2012 \ Draft \ Adit \ Entry \ draft \ WP \ Text \ 5_31_2012. docx$ J_31_2012.doc URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 2 of 20 The surveyed location of the mine adit is shown on a map produced in 1899 that was obtained from the DRMS (Figure 2). This map shows an adit survey conducted in 1899 and depicts the Red and Bonita adit as a single tunnel with a dogleg to the right. Based on the 1899 map, the first 50 feet inby trends to the east at N61°E, and at 50 feet the adit direction changes to S79°E inby. A structural geologic investigation was performed at the Red and Bonita Mine area by the DRMS in 2007. The investigation included structural and geotechnical observations with regard to emplacement of an interior bulkhead and identification of future study needs (DRMS 2007). 2.2 SITE ACCESS Road access is via County Road (CR) 110 from the town of Silverton to CR53 located at the abandoned town site
of Gladstone. CR53 continues northward up the Cement Creek valley to other mines and also passes the base of the Red and Bonita Mine. Access to the top of the mine dump is via an earthen road that intersects CR53 approximately 1,000 feet north of the mine site, and which crosses private and Bureau of Land Management (BLM) land. Also, an original road ("south access road") accessing the mid-portion of the mine dump intersects CR53 approximately 250 feet south of the mine. The top surface of the mine dump was capped in 2011 with talus overburden material derived from above the mine dump to allow for equipment access and for excavation activities at the collapsed mine portal, and was required due to a thick sequence of soft yellow boy fines on the dump surface. 2.3 GEOLOGY The Cement Creek basin is located in the volcanic terrain of the San Juan Mountains. The area was a late Oligocene volcanic center that witnessed the eruption of many cubic miles of lava and volcanic tuffs that covered the area to a depth of more than a mile (USGS 1969). The formation of the 10-mile diameter Silverton caldera produced faults that are generally concentric circular features. The caldera collapse was followed by multiple episodes of hydrothermal activity that produced widespread alteration and mineralization of the rocks (USGS 2007a). Cement Creek flows through the middle of the old Silverton caldera (EPA 1999). The Red and Bonita mine site is located entirely within Tertiary-aged rocks of the Silverton Volcanic sequence. The Silverton Volcanics are lava flows of intermediate to silicic composition and related volcaniclastic sediments that accumulated to a thickness of approximately 1,000 feet around older volcanoes prior to the subsidence of the Silverton Caldera (USGS 2002). These TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx 1816970 ED 000552 00030020-00058 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 3 of 20 volcanic flows have been subdivided into the mappable formations exposed at the Red and Bonita site. The Red and Bonita workings are driven into the Burns Member, a sequence of light to dark grey, thin to thick, intertonguing flows and domes of porphyritic dacite and rhyodacite that outcrops throughout the study area. These rocks have been propylitically altered throughout the watershed. Other geologic units at the site consist of aprons of talus and colluvium (DRMS 2007). A thick sequence of talus/colluvial material, cemented by fluids carrying an iron hydroxysulfate cementing agent, form a "wedge" of ferricrete that has been observed at a shallow depth, less than approximately 2 feet under the mine dump. This ferricrete deposit was also observed at the mine portal extending to an undetermined distance into the mine adit. The location of the crystalline rock contact inside the adit is unknown. The condition of the adit is also unknown. # 3.0 OBJECTIVES #### 3.1 MINE ENTRY OBJECTIVES Entry into the Red and Bonita Mine adit is being performed to assess the physical condition of the adit and to determine groundwater inflow areas, geologic make-up, and preferential fracturing and jointing within the rock units. Information from the investigation will be used to help make decisions regarding long-term solutions for relieving acid mine drainage flowing from the mine adit into Cement Creek. This investigation of the adit will include a bulkhead feasibility evaluation. Support activities include water management, ventilation, and structural improvements as necessary to allow safe access. Water management will include filtration of mine adit discharge water during work activities and water sample collection. Water sampling will be performed to determine whether the water management measures are effective in controlling disturbances of the precipitate accumulations in the adit that occur during the mine investigation, and to determine the nature of measureable inflows of water within the investigated portion of the adit. # 3.2 SAMPLING DESIGN AND DATA QUALITY OBJECTIVES The Red and Bonita Mine entry Data Quality Objectives (DQOs) were developed by UOS based on information provided by the TDD and the EPA "Guidance for the Data Quality Objectives Process" (EPA 2000). The DQO process applied to the Red and Bonita mine entry sampling are presented here. TDD No. 1008-01 $T:\START3\Red \ and \ Bonita \ Mine\Deliverables\Work \ Plan \ Mine \ Adit \ Entry \ and \ Rehabilitation \ 5_2012\Draft\Adit \ Entry \ draft\WP \ Text \ 5_31_2012.docx$ URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 4 of 20 Water that discharges from the Red and Bonita Mine contains contaminants that impact water quality in Cement Creek and the Animas River. The Red and Bonita Mine adit is being investigated to characterize conditions within the tunnel and determine potential means to reduce or manage the flow of contaminants from the mine. Evaluation of the temporary change in adit flow water quality, if any, due to the investigation activities and to assess the effectiveness of the controls will also be performed. The information from this investigation will be used along with other information to identify potential means of reducing or eliminating the flow of contaminants from the Red and Bonita Mine. 3.2.1 <u>Identifying the Decision Inputs</u> Geologic mapping of faults, fracture systems, etc. will be determined from this work and used to evaluate control measures for the adit flow. Inputs to characterizing inflows and identifying potential mine water management strategies to reduce the flow of contaminants from the Red and Bonita Mine are inflow water quality and flow measurements, and the results of the adit investigation. 3.2.2 Defining the Study Boundaries This investigation is focused on geologic and hydrogeologic conditions and chemistry of the water discharging into and from the Red and Bonita Mine adit. The decision of whether to pursue various mine water management strategies to reduce the load of contaminants that flow from the Red and Bonita Mine site to Cement Creek and the Animas River will be based on many factors, not just the sample results described in this plan. Sampling of the discharge during the work activities will provide information as to effectiveness of the water management controls during the operations. Decision rules will be established during subsequent investigations. The investigation of the mine workings and inflows is a screening level study and decisions will be based on additional studies during which support data will be collected to reduce the potential for decision errors that could be realized if decisions were based on a one-time event. Data will be reviewed or validated to ensure that they are acceptable for the intended use. TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx 1816970 ED_000552_00030020-00060 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 5 of 20 Because conditions in the mine are unknown, and the details of base flow water handling is dependent on work in the field, sample locations and timing are proposed here, but the actual sample locations and timing will be determined in the field. 4.0 CONCEPT OF OPERATIONS 4.1 SCHEDULE Entry into the Red and Bonita adit is scheduled for early June 2012. The adit investigation is estimated to be completed in approximately 3 days. 4.2 SAFETY All field activities will be conducted in strict accordance with a site-wide Site Health and Safety Plan (HASP), which will be developed before the start of field activities by DRMS and communicated to all site personnel. START personnel will also be guided by a UOS site-specific HASP, and Frontier Environmental will develop a HASP to ensure safety of their operations. It is anticipated that all field work can be accomplished in Level D personal protective equipment with the addition of air monitoring capabilities and appropriate mine entry gear. 4.3 ROLES AND RESPONSIBILITIES This work is being performed by a combination of groups and agencies; therefore, expectations for who is responsible for various aspects of the mine entry, investigation, and testing will be key in ensuring the work is performed efficiently and that the project objectives are met. The following sections describe the anticipated division of work. However, all parties will be working together to accomplish the overall objectives, so it is expected that all participants will provide support for all tasks as needed and able. The EPA On-Scene Coordinator will: Perform overall coordination of site activities; Arrange for site access; Approve the Work Plan including the Sampling and Analysis Plan (SAP), and the Quality Assurance Project Plan (QAPP); ☐ Assign sampling and analysis responsibilities; ☐ Make decisions regarding additional sampling locations/media; and TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx Page 6 of 20 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 | | Ensure that deliverables are adequate for the intended purpose. | |----------|--| | DRMS v | will: | | | | | | Prepare a Mine Entry Safety Plan; | | | Perform initial mine reconnaissance and air monitoring; | | | Inform EPA contractors of adit ventilation requirements; | | | Perform the geologic/hydrogeologic investigation in the Red and Bonita adit; | | | Collect water samples from discrete water inflow locations, and provide samples and a | | | description of the sample locations to UOS personnel for processing; | | | Measure flow at the water inflow sample
locations, where practical and as time permits; | | | Document DRMS activities including mine mapping, geologic and hydrogeologic | | | mapping; and | | Avoice | Prepare a report of DRMS activities and findings. | | UOS wi | 11: | | | | | | Procure a laboratory for sample analysis; | | | Contract with Frontier Environmental Services to provide physical site access, repair | | | the Red and Bonita adit, and manage site water; | | | Document site activities; | | | Note deviations from standard procedures in the logbook or field data collection sheets; | | | Collect, document, and ship samples in accordance with the SAP; and | | | Provide deliverables to EPA documenting monitoring activities and variations to the | | | standard procedures. | | Frontier | Environmental Services will: | | | Provide personnel, equipment, and materials to provide physical access to the site; | | | Repair the Red and Bonita adit for safe entries; | | | Install and operate an adit ventilation system; and | | | Manage site water. | TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5_31_2012.doex Page 7 of 20 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 #### 4.4 MINE ADIT ACCESS Site access roads will require minor improvement due to winter exposure since the 2011 work season. Improvements will be limited to maintaining previously widened road segments, installing storm water run-on and run-off sediment release control systems, and addition of "turn-out" tees to allow negotiation of the site access road turns by site equipment and vehicles. A site operations pad, an entry operations pad, and a mine water diversion system will be constructed to allow mine rehabilitation and mine water management. A soil stockpile location will be established to manage and isolate soils and rock removed during adit rehabilitation. # 4.5 BASE FLOW WATER HANDLING AND SEDIMENT CONTROL Initial adit entry will include actions to manage base flow from the adit to minimize the disturbance and release of precipitates and sediment. The principal components of the base flow water handling system are: | A water collection sump placed beyond the current work zone to direct water to the | |--| | filter bag system; | | 8-inch corrugated piping to isolate flow and convey water from within the adit to a | | collection point at the mine portal; | | 12-inch chlorinated polyvinyl chloride (CPVC) heavy wall water pipe that conveys | | mine adit water from near the portal to the water filter bag pad located at the top of the | | waste rock pile; | | Flocculent addition inline to increase filtration effectiveness; | | Adit water collection and storm water collection sump to be located in front of the | | portal; | | Erosion control features (sediment control log) installed on the leading edge of the work | | pad at the adit collection sump and along the outer edge of the work pad; | | Base flow water handling pump and pad to convey adit water collected during adit | | rehabilitation and work pad storm water; | | Geotube® water filter bag connected to the base flow water handling sump; | | Ditch or piping to convey primary Geotube® bag discharge down the dump face; and | | Secondary Geotube® water filter bag connected to the outlet (west end) of the CR53 | | culvert below the southwest toe of the waste rock dump. | TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5_31_2012.docx URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 8 of 20 The Red and Bonita Mine site base flow water handling system has two major operating scenarios, Scenario 1 for non-work hours, and Scenario 2 for site operating hours. Scenario 1 – Non-Work Hours During non-operating site hours, the adit discharge and storm water flows will be conveyed directly to the current discharge location at the west edge of the waste rock pile and directed into a pipe or channel where it will flow toward a Geotube® water filter bag attached to the outlet end of the CR53 culvert. The filter bag discharge will gravity flow through the wetlands to Cement Creek. Ultimately, this filtered water will flow through the same area that the adit water currently flows. <u>Scenario 2 – Hours of Site Operations</u> The captured adit water flow collected during operating hours will gravity feed-flow through a non-woven geo-textile Geotube® filter bag attached to the outlet of the 12-inch CPVC pipe. This will provide sediment collection from adit flows and run-off storm water collected from the work pad in the adit sump location. To facilitate suspended solid settling/filtering, a flocculent will be injected into the inlet of the 12-inch CPVC pipe to allow for mixing of the flocculent as water flows from the adit entrance to the discharge piping feeding the Geotube® bag. The currently selected water filter bag dimensions are 15 feet by 15 feet with a nominal sediment collection depth/height of approximately 12 inches. As water filter bag capacity is consumed, a replacement filter bag will be placed on the consumed filter bag and attached/piped to the base flow water handling piping system. This filter bag replacement action will be repeated until the adit work is completed. When adit work is completed, the used Geotube® bags will be placed and managed in an on-site location, most likely within the existing waste rock dump. The filter bags will be covered with waste rock or sediment. 4.6 ADIT STABILIZATION In 2011 the excavation of the portal blockage revealed an intact adit entrance approximately 6 feet wide by 8 feet high. Ferricrete geology was observed at the entrance, and sediment deposits TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx 1816970 ED 000552 00030020-00064 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Date: 05/2012 Page 9 of 20 were observed within the tunnel. The adit back and rib material appeared to be in stable condition. A new portal structure was installed using a 10-foot diameter round culvert inserted into an excavated slot aligned with the original adit. The new portal structure contains a welded steel locking closure to restrict adit access. The Red and Bonita adit support structures and rock conditions will be evaluated and, as necessary, temporary support structures placed to allow safe access by the adit inspection team. Adit rehabilitation is expected to include installation of steel post sets on 7-foot centers with Douglas fir timber-plank lagging. At the initiation and continuing during the placement of steel- post-sets and timber lagging, an 8-inch flexible corrugated pipe will be laid on the adit floor and a temporary sump will be established to collect water and pipe it past the work zone. The sump and piping installation will continue as steel post sets and timber lagging placement proceeds. The placement of adit base flow water handling pipe will allow for upstream collection and conveyance of adit water beyond the area of tunnel rehabilitation. Likewise, a ventilation system will be established as the work zone extends into the adit. 4.7 MINE ENTRY AND INVESTIGATION Once adit tunnel safety inspection is complete with stabilization and water management controls installed, the inspection team will continue the entry to assess the physical condition of the adit, identify groundwater inflow areas, characterize the geologic make-up of the adit, and identify preferential fracturing and jointing within the rock units. DRMS will perform measurements needed for preliminary tunnel mapping and photograph features of interest. 4.8 FINAL SITE BASE FLOW WATER HANDLING At the conclusion of on-site activities, adit flows will be directed into the 12-inch CVPC pipe installed at the portal and conveyed to the west-face waste rock dump outfall location. The water filter bags will be removed once adit sediment flows have stabilized following mine entry and support actions. The water filter bags will be staged at the mine waste rock dump for waste management. 5.0 <u>SAMPLING PROCEDURES</u> Sampling and sample management procedures are described below and reference UOS Technical Standard Operating Procedures (UOS 2005b). TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx 1816970 ED 000552 00030020-00065 Red and Bonita Adit Entry and Investigation — Work Plan Revision: 0 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Date: 05/2012 Page 10 of 20 5.1 SAMPLE LOCATIONS This mine adit entry event involves the collection of mine water and surface water samples (Tables 1 and 2). Sampling points will be determined in the field and may include the Red and Bonita AMD discharge prior to filtration, Geotube® discharge from the bag on top of the mine dump and from the bag at the downstream end of the CR53 culvert, other points of AMD discharge from the site, and mine inflows identified by DRMS. Other non-water samples will be obtained such as mine dump material and precipitate material. Samples numbers will be based on location criteria such as Filter Bag 2, Inflow 125', or already identified locations such as CC03D (CR53 culvert). Sample collection date and time will also be part of the number identification. For example; mine discharge water at the mine portal will be numbered CC03CA0530121002 in which CC03CA = portal location, 053112 = month/day/year, and 1002 = sample time. A sample time is needed to distinguish differing samples from the same location in the same day. Sample locations will be photographed and documented. 5.2 SAMPLING METHODS
UOS will measure field parameters, including pH, temperature and electrical conductivity, of each sample collected as described in TSOP 4.14 "Water Sample Field Measurements" (UOS 2005b). All data will be recorded on appropriate sample forms or in the site logbook. Water samples will be collected as described in TSOP 4.18, "Surface Water Sampling," into 1- liter poly type bottles for total metals plus mercury analysis (UOS 2005b). The samples will be preserved with nitric acid to a pH less than or equal to 2. Samples will be stored in a cooler with ice to maintain a temperature less than or equal to 4. Samples will be shipped to the laboratory via FedEx. If practical, the flow rate of mine inflows will be estimated using a container of known volume and a stopwatch. 5.3 FIELD QUALITY CONTROL PROCEDURES All samples will be handled and preserved as described in UOS TSOP 4.2, "Sample Containers, Preservation, and Maximum Holding Times." Calibration of the pH, temperature, and conductivity meters will follow instrument manufacturers' instruction manuals and UOS TSOP 4.14, "Water Sample Field Measurements" (UOS 2005b). TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Date: 05/2012 Page 11 of 20 All sampling equipment for these activities is anticipated to be dedicated; i.e., single use. If decontamination is required it will be performed in accordance with UOS TSOP 4.11, "Equipment Decontamination." Basic decontamination will consist of washing or brushing gross particulate off sampling equipment with tap water and a scrub brush, followed by washing equipment with a solution of Liquinox and distilled water, and rinsing with distilled water. After decontamination, the equipment will be allowed to gravity drain (UOS 2005b). In accordance with the UOS Generic QAPP (UOS 2005a) 1 duplicate water sample and 1 double volume matrix spike/matrix spike duplicate (MS/MSD) sample per set of 20 samples will be obtained to evaluate quality assurance at the site. One duplicate sample and one MS/MSD extra volume sample are anticipated to be required for this site. 5.4 LABORATORY ANALYTICAL PARAMETERS All samples will be analyzed for total metals plus mercury by the CompuChem Laboratory located in Cary, North Carolina, using EPA methods 6010, 6020, and 7470. 5.5 CHAIN OF CUSTODY After sample collection and identification, all samples will be handled in strict accordance with the chain-of-custody protocol specified in UOS TSOP 4.3, "Chain of Custody" (UOS 2005b). 6.0 DATA QUALITY EVALUATION Data quality will be evaluated using the following evaluations, as appropriate. 6.1 DATA QUALITY INDICATORS Data quality assessment to determine data quality and usability will include: ☐ A Quality Assurance/Quality Control (QA/QC) review of field generated data and observations; Individual data validation reports for all sample delivery groups, if requested by the OSC; Review of the procedures used by the validator to qualify data for reasons related to dilution, reanalysis, and duplicate analysis of samples, if applicable; TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Date: 05/2012 Page 12 of 20 Evaluation of QC samples, such as field duplicates/replicates and matrix spike laboratory control samples to assess the quality of the field activities and laboratory procedures; Assessment of the quality of data measured and generated in terms of accuracy, precision, and representativeness; and Summary of the usability of the data, based upon the assessment of data conducted during the previous steps. Quality attributes are qualitative and quantitative characteristics of the collected data. The principal quality attributes to environmental studies are precision, bias, representativeness, comparability, completeness, and sensitivity. Data quality indicators (DQIs) are specific indicators of quality attributes. Performance criteria address the collection of samples, and acceptance criteria address the use of the data collected (EPA 2002). Performance and acceptance criteria will be specified in the project-specific FSP for appropriate data quality indicators. The total allowable errors will be managed to achieve an acceptable level of confidence in the decisions that are made from the data. # 6.1.1 Bias Bias is systematic or persistent distortion of a measurement process that causes errors in one direction. The extent of bias can be determined by an evaluation of laboratory initial calibration/continuing calibration verification, laboratory control spike/laboratory control spike duplicates, blank spike, MS/MSD, and Method Blank. #### 6.1.2 Sensitivity Sensitivity generally refers to the capability of a method or instrument to discriminate between small differences in analyte concentration and is generally discussed as detection limits. Before sampling begins it is important to compare detection limits and project requirements in order to select a method with the necessary detection limits to meet the project goals. URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Page 13 of 20 6.1.3 Precision Precision is the measure of agreement among repeated measurements of the same property under identical, or substantially similar, conditions and is expressed as the relative percent difference (RPD) between the sample pairs. 6.1.4 Representativeness Representativeness is the measure of the degree to which data accurately and precisely represents a characteristic of a population parameter, variations at a sampling point, a process condition, or an environmental condition. Representativeness encompasses both the degree to which measurements reflect the actual concentration, and the degree to which sampling units reflect the population they represent. The effect of representativeness should be considered on two levels: within the sample unit and between sample units. A discussion of representativeness should include adherence to TSOPs for sampling procedures, field and laboratory QA/QC procedures, appropriateness of sample material collected, compositing to increase sample representativeness, homogenization, analytical method and sample preparation, and achievement of Measurement Quality Objectives (MQOs) for the project. 6.1.5 <u>Completeness</u> Completeness is a measure of the amount of valid data obtained from a measurement system. The actual percentage of completeness is less important than the effect of completeness on the data set. 6.1.6 Comparability Comparability is the qualitative term that expresses the confidence that two data sets can contribute to common interpretation and analysis and is used to describe how well samples within a data set, as well as two independent data sets, are interchangeable 7.0 <u>DELIVERABLES</u> At the completion of the sampling event, UOS will prepare a report that includes the following information: TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5 31 2012.docx Page 14 of 20 URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 | Brief description of site activities and START observations; | | | |--|--|--| | Sample locations including description and a photograph (locations sampled by DRMS will be | | | | documented in a DRMS report); | | | | Exceptions to the SAP and rationale; | | | | Analytical laboratory(ies); | | | | Tabularized data including: | | | | Field and laboratory analytical data, Flow rates at each mine inflow sample location to the extent the data is available from DRMS, method of flow rate measurement, and indication of confidence in measurement; | | | | Comparison of results to previous data or data from other locations, as appropriate; | | | | Estimation of the impacts of discharging mine water during the test relative to the impacts of | | | | typical Red and Bonita discharge on water quality in the Animas River (sample location A72); and | | | | Brief discussion regarding the conditions in the Red and Bonita adit, as available. | | | DRMS will prepare a report documenting adit conditions. URS Operating Services, Inc. START 3, EPA Region 8 Contract No. EP-W-05-050 Date: 05/2012 Page 15 of 20 8.0 <u>LIST OF REFERENCES</u> Colorado Division of Reclamation, Mining & Safety (DRMS). 2007. "Report of Structural Geologic Investigation – Red and Bonita Mine." August, 2007. URS Operating Services, Inc. (UOS). 2005a. "Generic Quality Assurance Project Plan" for the Superfund Technical Assessment and Response Team 2, Region 8. June 13, 2005. URS Operating Services, Inc. (UOS). 2005b. "Technical Standard Operating Procedures for the Superfund Technical Assessment and Response Team (START), EPA Region 8." September 2005. U.S. Environmental Protection Agency (EPA). 1999. Prioritization of Abandoned Mines in the Animas Watershed, Southwestern Colorado. Carol Cox Russell. http://www.epa.gov/hardrockmining/ scitosci/scifiles/422-animas.pdf U.S. Environmental Protection Agency (EPA). 2000. "Guidance for the Data Quality Objectives Process." EPA QA/G-4. Copies may be obtained from the Quality Staff Home Page: www.epa.gov/quality August 2000. U.S. Geological Survey (USGS). 1969. "Geology and Ore Deposits of the Eureka and Adjoining Districts, San Juan Mountains, Colorado. Wilbur S. Burbank and Robert G. Luedke. Geological Survey Professional Paper 535. U.S. Geological
Survey (USGS). 2002. "Generalized Geologic Map of Part of the Upper Animas River Watershed and Vicinity, Silverton, Colorado. Douglas B. Yeager and Dana J. Bove. Miscellaneous Field Studies Map MF-2377. U.S. Geological Survey (USGS). 2007. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. Church, S. E., Guerard, P.V., and Finger, S.E. eds. USGS Professional Paper 1651. U.S. Geological Survey (USGS). 2007a. Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed. San Juan County, Colorado. Professional Paper 1651. Volume 1. Chapter E3, "Major Styles of Mineralization and Hydrothermal Alteration and Related Solid- and Aqueous-Phase Geochemical Signatures." By Dana J. Bove, M. Alisa Mast, J. Bradley Dalton, Winfield G. Wright, and Douglas B. Yager. TDD No. 1008-01 T:\START3\Red and Bonita Mine\Deliverables\Work Plan Mine Adit Entry and Rehabilitation 5_2012\Draft\AditEntrydraftWP Text 5_31_2012.doex 1816970 ED_000552_00030020-00071 NOT TO SCALE 1 inch Page Size: 8.5 x 11 Figure: Figure Title: 1899 Survey Map of Red and Bonita TDD County: San Juan TDD State: CO uan TDD: 1008-01 Date: 12/2010 Sources: Page 18 of 20 TABLE 1 Sample Locations and Rationale | Matrix | Sample # | Location | Rationale | |----------------------------|----------|--|---| | Mine discharge water | TBD | To be collected from the prior to mine entry. | To monitor effectiveness of | | Mine discharge water | TBD | To be collected from the top of the mine dump after filtration. | filtration performed on site and metals content within site waters. | | Mine discharge water | TBD | To be collected from the toe of the mine dump after filtration. | | | Mine adit water | TBD | To be collected from the interior of the mine adit from mine inflow locations. | To determine the quality of mine inflow waters. | | Mine dump material | TBD | Mine dump. | Determine metals content in dump material. | | Mine discharge precipitate | TBD | Mine adit and/or from flow path on dump face. | Determine metals content. | | QA/QC | TBD | To be determined in field. At least one duplicate sample and at least one double volume MS/MSD sample will be collected. | Quality assurance/quality control. | Page 19 of 20 ### TABLE 2 Sample Plan Checklist | | | Field Parameters | | | Laboratory
Analysis | Quality Control Samples | | | | |-------------------------------|----------------------|------------------|----|------|------------------------------|-------------------------|-------|-------|--| | Sample
Location | Sample Type | Temp | pН | Cond | Total Metals
plus Mercury | Dup | Spike | Blank | | | All aqueous | Mine discharge water | X | X | X | X | | | | | | One location to be determined | QA/QC | X | X | X | X | X | | | | | One location to be determined | QA/QC | X | X | X | X | | X | | | Date: 05/2012 Page 20 of 20 TABLE 3 Sample Container Types, Volumes, and Sample Preservation | Sample Matrix | Analysis | Analysis Mode | Required
Detection
Limits | Units | Container
Number and
Type ² | Required
Volume | Preservation | Analysis Time | |------------------------------------|------------------------------|---------------|---------------------------------|-------|--|--------------------|---------------------------|---------------| | Mine Discharge
Water | Total Metals plus Mercury | NA | EPA Methods 6010,
6020, 7470 | NA | 1 1-liter Poly
bottle | 1 liter | Nitric acid to $pH \le 2$ | 4-6 weeks | | Mine dump and precipitate material | Total Metals
plus Mercury | NA | EPA Methods 6010,
6020, 7470 | NA | glass jar | 8 ounce | Wet ice | 6 months | # APPENDIX D Filtrate Disposal uc 0894 ### NON-HAZARDOUS MANIFEST | Colorado | | | | | | |--|--|--|-------------------|---|---| | | GENE | RATOR | | | | | Generator 1.5 EPA Address 1595 Wyn Koop St. | | EPA | | | | | Denver, CO 8020 | <u> </u> | Shipping Location | Red+ | Bonita F | line Site | | | | Address CR 10 | + CRS | 3 Silve | aun W | | Phone 303-312-6723 | and the second s | Phone 23 303 | | *************************************** | | | Description of
Waste Materials | industrial
Wasta Code # | Profile
Number | Total
Quantity | Unit of
Messure | Container
Type | | Mine Drainage Precipitate | | 8000a05 | 20 | yd. | Roll-of | | • | | | | | 3042 | law or regulation, have been fully and accurately de according to applicable law and regulations. Anticol Hinds Generator Authorized Agent Name (Print) | TRANSP | Signature | 110 | (a) 7 | /3/20/2
ry Date | | Transporter Name WCA | or the state of th | Driver Name (Print | | | partlel | | Do Day No | | Truck Number | X 60 | | | | Address PO BOX 215 | | Truck Type | X Roll | ott | - | | hereby acknowledge receipt of the above-described transport from the generator shipping location listed in | materials for | I hereby adviowled received from general without incident to the | rator shipping | location and | | | Driver Signature Ship | ment Date | Priver Signature | -Ou | | Delivery Date | | | DESTIN | ATION | | | | | Mailing Address | | Physical Address | | | ren en e | | Site Name Bondad Landfill | | * | d Landfill | | | | Address P.O. Box 215 | | Address CR 318 | • Bondad, | CO 81301 | | | Bloomfield, NM 67413 | | Phone Number | 1-970-247-8 | 295 | RCJ - 110579W | | hereby acknowledge receipt of the above described AUA LICS SATE Name of Authorized Apple (Print) | materials. | Haula | Hul | 2 7 | 13/2 | | Name of Authorized Agent (Print) | | Signature | | | Receipt Date | | Requested Nienneal Facil | ity: Bondad Landfill, Durango, Co | | Waste Profile # |
--|--|---|--| | nequesieu Disposal Facil | ity: bortoad Caridilli, Durango, Ge | | WCA Sales Rep:Susan Wright | | I. Generator Info | | | | | Generator Name : U.S. El | | | Date: | | | Remote location, Gladstone, CO | | | | City: Gladstone | | | | | | County; San Juan | State: Colorado | Zip: 81433 | | | s(If Different): 1595 Wynkoop St. | | | | City: Denver | County: Denver | State: Colorado | Zip: 80202 | | Generator Contact Name | (print): Steve Way | | | | Phone Number: 303-312-(| | Fax Number: | | | IIa. Transporter In | Mormation | | | | Transporter Name: WCA | | Transporter Cont. | act Name: Susan | | Transporter Address: 15 | | | | | City: Durango | County: La Plata | State: CO | Zip: 81303 | | Phone Number: 800-230-6 | 5072 | Fax Number: | | | llb. Billing Informa | ation | | | | Bill To: Frontier Environ | mental Services, c/o Dan Hind | ls. | | | Billing Address: 5350 V | | | | | City: Arvada
III. Waste Stream | County: Jefferson | State: CO | Zip: 80002-1958 | | Name of Waste: Mine drain | | | | | Process Generating Waste | Type of Waste: In | ndustrial Process Waste X Pollu | ition Control Wasta | | | Physical State: Solid | | | | | Method of Shipment: | | | Other: | | Estimated Annual Volume: | The second secon | (fabric filter bags) Oth | | | "Cittitations of holisters and stratters and | | | Other: | | | | Gallons | | | requency: X One Time | Dally Wee | | Other | | Frequency: X One Time Special Handling Instruction | Dally Wee | | | | Frequency: X One Time
Special Handling Instruction
V. Representative Sa | Dally Wee | kly Monthly | Other | | Frequency: X One Time Special Handling Instruction V. Representative Sales the representative sample | Dally Wee | kly Monthly | | | Frequency: X One Time Special Handling Instruction V. Representative Sas the representative sample PA 40 CFR 261.20(c) gu | Daily Weens: Ample Certification The collected to prepare this profile aidelines or equivalent rules? | kly Monthly | Other collected in accordance with U.S. | | Frequency: X One Time
Special Handling Instruction
V. Representative Sa
s the representative sample | Daily Weens: Ample Certification Type of Sample:Comp | klyMonthly and laboratory analysis, YesNo | Other collected in accordance with U.S. Sample | | Frequency: X One Time Special Handling Instruction V. Representative Sas the representative sample PA 40 GFR 261.20(c) guidant of the part pa | Daily Weens: Ample Certification The collected to prepare this profile bidelines or equivalent rules? X Type of Sample: Company, NC | and laboratory analysis, YesNo | Other collected in accordance with U.S. | | opposite the same | isimeenany | enters expression | and the second section is a second | formation recommend | onto in the | management of the | |-------------------|------------|-------------------|------------------------------------|---------------------|---|-------------------| | · V | Vac | to Dr | ofile # | į. | | | | nerwww.nonibito | of Autom | 1 L | CALLERY TO | Pr | | | | | | | rit merendensedili | Simonomone | *************************************** | - | | | sical Characteris | tics of Waste | · · · · · · · · · · · · · · · · · · · | | Embalatoria informativa inform | | |---|---
--|--|--|--|---| | | : Components | | | | % by weight (rang | (e) | | | I−30.2% | | | | | | | 2. Clay | -like | | | | | | | 3 | | | | | \$100 may 1 | | | 4. | | | | | | | | 5 | | | | | | | | Color
Red | Odor (describe)
None | Free LiquidsYes X No | % Solids
30.2 | pH:
4.21 | Flash Point: | Phenol | | Attack Labore | | Content % | | | 1/a | n/a ppm | | Does this was following Pest epoxides), Lin n 40 CFR 26 | | ess contain regulate
les: Chlordane, Endi
Toxaphene, 2,4-D, o | d concentration
in, Heptachlor
r 2, 4,5-TP Silv | ns of the
(and it
vex as defined | | | | irom high leve
261,237 | te or generating procests of Hydrogen Sulfid | a or Hydrogen Cyani | de as defined i | in 40 CFR | Yes or _X | No | | PCB's) as de | te contain regulated of
fined in 40 CFR Part | 7617 | | Y 1 M. T | Yes or X | No | | defined in 40 (| te contain regulated of
CFR 261.31, 261.32,
te contain regulated o | 261.33, including RC | RA F-Listed Si | vastes
olvents? | Yes or X | No | | Tetrachlorodib
261.31? | penzodioxin (2,3,7,8-T | CCD), or any other (| 4.8-
dioxin as define | ed in 40 CR | Yes orX_ | No | | s this a regula | ated Toxic Material as | defined by Federal | and/or State re | gulations? | Yes or X | No | | egulations? | ited Radioactive Was | | | | Yes or X | | | egulations? | ited Medical or Infecti | | | nd/or State | Yes or X | No | | | enerated at a Federa
erator Certification | | p Site? | | Yes orX_ | No | | Analytical Resi
urther certify to
ittempt to deliverate material
condition perta
acility/recycling
the company hadividual warm | that to the best of methe waste material be ults/Material Safety D hat by utilizing this prover for disposal any wethis facility is prohibitatining to the waste not gracility against any cas not altered the formants that he/she is autoresentative Name Ar | and offered for disposata Sheets submitted offle, neither myself in aste which is classified from accepting by provided herein. Outlamages resulting from or content of this pathorized to sign this in the content of the second of the second of the content o | aal and all know
d are truthful an
nor any other e
led as toxic was
law. I shall in
ur company he
om this certifica
profile sheet as
document on b | vn or suspected complete and complete and mployee of the ste, hazardous neediately givereby agrees to ation being inaprovided by A ehalf of the Ge | d hazards have be
nd are representation
company will delive
waste or infectious
written notice of a
full indemnify this
ocurate or untrue. | en disclosed. All
ve of the waste. I
ver for disposal or
s waste, or any othe
any change or
disposal | | uthorized Ren | presentative Signature | | Action to the second se | 7/
Date | 6/12 | | | II. Decis | | | | - Jar | Marie Control of the | | | Approved | AND THE RESIDENCE OF THE PARTY | and the second s | Expirati | OT | | | | onditions. | | | | | | | | | | | | | | | | N | Vame, Title | | Sia | nature | | | PPT04-061412-1121 Client: URS OPERATING SERVICES SDG: 1206068 Project: 36548983/PR10141/OS-12-P-10141-WASTE-TCLP Lab ID: 1206068-01 % Solid: Matrix: Soil Sampled: 06/14/12 Received: 06/21/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|----------|-----------------|--------|-------|------|----|-----------|----------|---------------| | 7440-38-2 | Arsenic | 4.04 | 3,92 | 2500 | | T. | EPA 6010C | 2F26011 | 6/26/12 10:26 | | 7440-39-3 | Barium | | 66.5 | 50000 | | U | EPA 6010C |
2F26011 | 6/26/12 10:26 | | 7440-43-9 | Cadmium | 31.1 | 1.77 | 500 | į | j | EPA 6010C | 2F26011 | 6/26/12 10:26 | | 7440-47-3 | Chromium | | 3.76 | 2500 | | U | EPA 6010C | 2F26011 | 6/26/12 10:26 | | 7439-92-1 | Lead | 118 | 3.58 | 2500 | | J | EPA 6010C | 2F26011 | 6/26/12 10:26 | | 7439-97-6 | Mercury | 0.0830 | 0.0355 | 200 | | | EPA 7470A | 2F26012 | 6/25/12 10:15 | | 7782-49-2 | Selenium | 10.3 | 3,54 | 500 | | | EPA 6010C | 2F26011 | 6/26/12 10:26 | | 7440-22-4 | Silver | | 2.02 | 500 | | U | EPA 6010C | 2F26011 | 6/26/12 10:26 | PPT04 061412 1121 Client: URS OPERATING SERVICES SDG: 1206084 Project: 36548983/PR10141/OS-12-P-10141-WASTE-TCLP | CAS NO. | Analyte | Cone.
(pH Units) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |---------|------------------|----------------------|------|-----|------|---|-----------------|----------|---------------| | PH | pH | 4.21 | | | 1.1 | | EPA 9045C/9045D | 2F27012 | 6/26/12 14:45 | | CAS NO. | Analyte | Conc.
(mg/kg dry) | MDL | RL. | D.F. | Q | Method | Sequence | Analyzed | | RCYAN | Reactive Cyanide | 4,13 | 3.31 | 414 | | | 9014 | 2F28002 | 6/26/12 16:30 | | RSULF | Reactive Sulfide | 33.2 | 3.31 | 414 | | 1 | EPA 9034 | 2F28001 | 6/26/12 17:00 | | RSULF | Reactive Sulfide | 33,2 | 3.31 | 414 | 1 | J | EPA 9034 | 2F28003 | 6/28/12 8:15 | PPT04-061412-1121 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206058</u> Project: <u>36548983/PR10141/OS-12-P-10141-14 DAY WASTE</u> Lab ID: 1206058-01 % Solid: 30.2 Matrix: Soil Sampled: 06/14/12 Received: 06/16/12 | CAS NO. | Analyte | Conc.
(mg/kg dry) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|----------------------|--------|-------|------|--|-----------|----------|---------------| | 7429-90-5 | Aluminum | 2360 | 6.59 | 61.9 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-36-0 | Antimony | | 1.38 | 9.28 | | U | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-38-2 | Arsenic | 67.0 | 0.510 | 3.09 | | 3. | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-39-3 | Barium | 5.66 | 3.68 | 61.9 | | j, | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-41-7 | Beryllium | 3,93 | 0.0872 | 1.55 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-43-9 | Cadmium | 5,83 | 0.199 | 1.55 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-70-2 | Calcium | 1750 | 92.5 | 1550 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-47-3 | Chromium | 1.37 | 0.368 | 3.09 | | J | FPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-48-4 | Cobalt | | 0.915 | 6.19 | | U | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-50-8 | Copper | 128 | 0.356 | 1.55 | 1 | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7439-89-6 | Iron | 509000 | 27.5 | 309 | 5 | D | EPA 6010C | 2F22004 | 6/22/12 14:23 | | 7439-92-1 | Lead | 1210 | 0.563 | 3.09 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7439-95-4 | Magnesium | 140 | 81.3 | 1550 | | 1 | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7439-96-5 | Manganese | 174 | 0.156 | 3.09 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7439-97-6 | Mercury | 0,145 | 0.0214 | 0.101 | | | EPA 7471B | 2F25008 | 6/22/12 14:59 | | 7440-02-0 | Nickel | 0.608 | 0.290 | 3.09 | | ſ | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-09-7 | Potassium | 76.8 | 10,5 | 1550 | | 1 | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7782-49-2 | Selenium | | 0.634 | 3.09 | | Ü | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-22-4 | Silver | 2.86 | 0.167 | 1.55 | 1 | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-23-5 | Sodium | 195 | 165 | 1550 | | j | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-28-0 | Thallium | 38.9 | 1.99 | 9.28 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-62-2 | Vanadium | 21,7 | 0,439 | 6.19 | | | EPA 6010C | 2F22004 | 6/22/12 10:39 | | 7440-66-6 | Zinc | 399 | 0.826 | 9.28 | 1 | The state of s | EPA 6010C | 2F22004 | 6/22/12 10:39 | # APPENDIX E **Laboratory Analytical Results** Total Metals Data CC03CA-05302012-1002 Client: URS OPERATING SERVICES SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY T</u> Lab ID: 1206008-01 % Solid: Matrix: Water Sampled: 05/30/12 Received: 06/05/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|-----------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 4290 | 78.2 | 200 | / 11 | | EPA 6010C | 2F19018 | 6/19/12 20:5 | | 7440-36-0 | Antimony | | 0.130 | 10.0 | - 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-38-2 | Arsenic | 2,86 | 0.700 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-39-3 | Barium | 13.9 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-41-7 | Beryllium | 6.91 | 0.165 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-43-9 | Cadmium | 32.7 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-70-2 | Calcium | 448000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 11:5: | | 7440-47-3 | Chromium | | 0.340 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:01 | | 7440-48-4 | Cobalt | 98.2 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7440-50-8 | Copper | 8.49 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7439-89-6 | Iron | 89500 | 69.4 | 200 | i | | EPA 6010C | 2F19018 | 6/19/12 20:56 | | 7439-92-1 | Lead | 77.7 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7439-95-4 | Magnesium | 25400 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 20:56 | | 7439-96-5 | Manganese | 35100 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 11:55 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | ET AR | U | EPA 7470A | 2F25012 | 6/25/12 8:44 | | 7440-02-0 | Nickel | 61.7 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7440-09-7 | Potassium | 1830 | 1470 | 5000 | 1 | j | EPA 6010C | 2F19018 | 6/19/12 20:56 | | 7782-49-2 | Selenium | 3.14 | 0.450 | 25.0 | 135 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7440-22-4 | Silver | | 0.0400 | 5,00 | E5 | U,D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7440-23-5 | Sođium | 8110 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 20:56 | | 7440-28-0 | Thallium | 0.179 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7440-62-2 | Vanadiom | 0.306 | 0.280 | 25.0 | 5 | J,D | EPA 6020A | 2F26008 | 6/25/12 15:08 | | 7440-66-6 | Zinc | 14000 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 20:56 | CC03CA-05302012-1704 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY T</u> Lab ID: 1206008-02 % Solid: Matrix: Water Sampled: 05/30/12 Received: 06/05/12 | CAS NO. | Analyte | Conc.
(ug/L.) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|------------------|--------|-------|------|------|-----------|----------|--------------| | 7429-90-5 | Aluminum | 4280 | 78.2 | 200 | 1 | | EPA 6010C | 2F19018 | 6/19/12 21: | | 7440-36-0 | Antimony | | 0.130 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15: | | 7440-38-2 | Arsenic | 2.78 | 0.700 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15: | | 7440-39-3 | Barium | 13.2 | 0.500 | 50,0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15: | | 7440-41-7 | Beryllium | 7.48 | 0.165 | 5.00 | 5 | l b | EPA 6020A | 2F26008 | 6/25/12 15: | | 7440-43-9 | Cadmium | 33.3 | 0.0550 | 5,00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-70-2 | Calcium | 445000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:0 | | 7440-47-3 | Chromium | | 0.340 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-48-4 | Cobalt | 93.9 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-50-8 | Соррег | 7.07 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7439-89-6 | Iron | 89000 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:0 | | 7439-92-1 | Lead | 77.9 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7439-95-4 | Magnesium |
25400 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:0 | | 7439-96-5 | Manganese | 34700 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:0 | | 7439-97-6 | Mercury | 0.0440 | 0.0355 | 0.200 | | 1 | EPA 7470A | 2F25012 | 6/25/12 8:4 | | 7440-02-0 | Nickel | 64.6 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 7440-09-7 | Potassium | 1800 | 1470 | 5000 | 11 | , | EPA 6010C | 2F19018 | 6/19/12 21:0 | | 782-49-2 | Selenium | 2.66 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 440-22-4 | Silver | 0.0406 | 0.0400 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 440-23-5 | Sodium | 8030 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:0 | | 440-28-0 | Thallium | 0,147 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 440-62-2 | Vanadium | | 0.280 | 25.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:0 | | 440-66-6 | Zinc | 14000 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 21:0 | CC03D-05302012-1030 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY TA</u> Lab ID: 1206008-03 % Solid: Matrix: Water Sampled: 05/30/12 Received: 06/05/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|-------------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 4930 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:10 | | 7440-36-0 | Antimony | | 0,130 | 10.0 | 5 | U,D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-38-2 | Arsenic | 3.27 | 0.700 | 5.00 | 5 | JAD | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-39-3 | Barium | 14.1 | 0.500 | 50.0 | - 5 | J,D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-41-7 | Beryllium | 7,26 | 0.165 | 5.00 | 5 | מ | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-43-9 | Cadmium | 32.4 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-70-2 | Calcium | 451000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:10 | | 7440-47-3 | Chromium | | 0.340 | 10.0 | 5 | Ü, D | EPA 6020A | 2F26008 | 6/25/12 15:11 | | 7440-48-4 | Cobalt | 98.4 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-50-8 | Copper | 8.81 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7439-89-6 | tron | 92900 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:1 | | 7439-92-1 | Lead | 109 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7439-95-4 | Magnesium | 25800 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:1 | | 7439-96-5 | Manganese | 35300 | 6.72 | 20,0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:1 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | U | EPA 7470A | 2F25012 | 6/25/12 8:4 | | 7440-02-0 | Nickel | 66.1 | 0.0455 | 5.00 | 5 | <u>I</u> DI | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-09-7 | Potassium | 1840 | 1470 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:1 | | 7782-49-2 | Selenium | 3.27 | 0.450 | 25.0 | 5 | 7,0 | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-22-4 | Silver | 0.0506 | 0.0400 | 5.00 | 5 | J,D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-23-5 | Sodium | 8170 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:1 | | 7440-28-0 | Thallium | 0.158 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-62-2 | Vanadium | 0.506 | 0.280 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-66-6 | Zinc | 14200 | 10,2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 21:1 | CC03D-05302012-1641 Client: URS OPERATING SERVICES SDG: <u>1206008</u> Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY T Lab ID: 1206008-04 % Solid: Matrix: Water Sampled: <u>05/30/12</u> Received: 06/05/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|------|-----------|----------|--------------------------------| | 7429-90-5 | Aluminum | 4470 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21: | | 7440-36-0 | Antimony | 0.302 | 0.130 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-38-2 | Arsenic | 3.63 | 0.700 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-39-3 | Barium | N 15.3 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-41-7 | Beryllium | 7.20 | 0.165 | 5.00 | 5 | đ | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-43-9 | Cadmium | 34.2 | 0.0550 | 5.00 | 5 | g | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-70-2 | Calcium | 444000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:1 | | 7440-47-3 | Chromium | | 0.340 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-48-4 | Cobalt | 95.8 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7440-50-8 | Copper | 9.53 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:1 | | 7439-89-6 | Iron | 89800 | 69.4 | 200 | 196 | | EPA 6010C | 2F19018 | 6/19/12 21:1 | | 7439-92-1 | Leaf | 93.9 | 0.105 | 5,00 | 5 | ď | EPA 6020A | 2F26008 | 6/25/12 15:13 | | 7439-95-4 | Magnesium | 25900 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:17 | | 7439-96-5 | Manganese | 34900 | 6.72 | 20.0 | 2 | В | EPA 6010C | 2F26011 | 6/26/12 12:17 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | 8 1 | Ū | EPA 7470A | 2F25012 | 6/25/12 8:50 | | 7440-02-0 | Nickel | 65.7 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:17 | | 7440-09-7 | Potassium | 1830 | 1470 | 5000 | 1 | | EPA 6010C | 2F19018 | 6/19/12 21:17 | | 7782-49-2 | Selenium | 3.31 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:17 | | 7440-22-4 | Silver | 0.337 | 0.0400 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:17 | | 7440-23-5 | Sodium | 8100 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:17 | | 440-28-0 | Thallium | 0.383 | 0.0750 | 5.00 | | J, D | EPA 6020A | 2F26008 | | | 440-62-2 | Vanadium | 0.562 | 0.280 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:17 | | 440-66-6 | Zinc | 14200 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/25/12 15:17
6/19/12 21:17 | A72-06062012-1745 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT</u> | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|---------|-------|------|-----|-----------|----------|---------------| | 7429-90-5 | Aluminum | 647 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7440-36-0 | Antimony | 0.100 | 0.0260 | 2.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-38-2 | Arsenic | 0.655 | 0.140 | 1.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-39-3 | Barium | 19.0 | 0.100 | 10.0 | | | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-41-7 | Beryllium | 0.116 | 0.0330 | 1.00 | | j j | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-43-9 | Cadmium | 0.779 | 0.0110 | 1,00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-70-2 | Calcium | 28300 | 1720 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7440-47-3 | Chromium | 0.128 | 0.0680 | 2.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-48-4 | Cobalt | 1.55 | 0.00950 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-50-8 | Copper | 9.56 | 0.120 | 2.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7439-89-6 | Iron | 914 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7439-92-1 | Lead | 3.55 | 0.0210 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7439-95-4 | Magnesium | 2160 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7439-96-5 | Manganese | 422 | 3.36 | 10.0 | | | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | U | EPA 7470A | 2F25012 | 6/25/12 8:55 | | 7440-02-0 | Nickel | 1.94 | 0.00910 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-09-7 | Potassium | | 1470 | 5000 | 1 | U | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7782-49-2 | Selenium | 0.312 | 0.0900 | 5,00 | | 1 | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-22-4 | Silver | 0.0277 | 0.00800 | 1.00 | |) | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-23-5 | Sodium | | 1840 | 5000 | | u | EPA 6010C | 2F19018 | 6/19/12 21:25 | | 7440-28-0 | Thallium | 0.0369 | 0.0150 | 1.00 | 1 | | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-62-2 | Vanadium | 0.219 | 0.0560 | 5.00 | | j I | EPA 6020A | 2F26008 | 6/25/12 13:09 | | 7440-66-6 | Zinc | 186 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 21:25 | #### COMPLOID UATA SHEET A72-06062012-1825 Client: <u>URS OPERATING SERVICES</u> SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT Lab ID: 1206008-06 % Solid: Matrix: Water Sampled: 06/06/12 Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|---------|-------|------|---|-----------|----------|---------------| | 7429-90-5 | Aluminum | 700 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7440-36-0 | Antimony | 0.102 | 0.0260 | 2.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-38-2 | Arsenic | 0,652 | 0.140 | 1.00 | MA | J | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-39-3 | Barium | 20.1 | 0.100 | 10.0 | | | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-41-7 | Beryllium | 0.138 | 0.0330 | 1.00 | 1 | J | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-43-9 | Cadmium | 0.768 | 0.0110 | 1.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-70-2 | Calcium | 28600 | 1720 | 5000 | 15 | & | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7440-47-3 | Chromium | 0.131 | 0.0680 | 2.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-48-4 | Cobalt | 1.54 | 0.00950 | 1.00 | 1 | | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-50-8 | Copper | 9.96 | 0.120 | 2.00 | 1 | | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7439-89-6 | Iron | 950 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7439-92-1 | Lead | 4.15 | 0.0210 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7439-95-4 | Magnesium | 2200 |
1640 | 5000 | | J | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7439-96-5 | Manganese | 422 | 3.36 | 10.0 | | | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | U | EPA 7470A | 2F25012 | 6/25/12 8:57 | | 7440-02-0 | Nickel | 1,82 | 0.00910 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-09-7 | Potassium | | 1470 | 5000 | | υ | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7782-49-2 | Selenium | 0.270 | 0.0900 | 5.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-22-4 | Silver | 0.0218 | 0.00800 | 1.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-23-5 | Sodium | | 1840 | 5000 | | Ü | EPA 6010C | 2F19018 | 6/19/12 21:54 | | 7440-28-0 | Thallium | 0.0215 | 0.0150 | 1.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-62-2 | Vanadjum | 0.235 | 0.0560 | 5.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:10 | | 7440-66-6 | Zine | 186 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 21:54 | A72-06062012-1845 Client: URS OPERATING SERVICES SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT Lab ID: 1206008-07 % Solid: Matrix: Water Sampled: 06/06/12 Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|---------|-------|-------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 672 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7440-36-0 | Antimony | 0,0907 | 0.0260 | 2.00 | | Ţ | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-38-2 | Arsenic | 0.686 | 0.140 | 1.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-39-3 | Barium | 19,1 | 0.100 | 10.0 | | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-41-7 | Beryllium | 0.113 | 0.0330 | 1.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-43-9 | Cadmium | 0.770 | 0.0110 | 1.00 | | 1 | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-70-2 | Calcium | 27800 | 1720 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7440-47-3 | Chromium | 0.176 | 0.0680 | 2.00 | 1144 | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-48-4 | Cobalt | 1.50 | 0.00950 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-50-8 | Соррег | 9.99 | 0.120 | 2.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7439-89-6 | Iron | 935 | 69.4 | 200 | 1.1 | | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7439-92-1 | Lead | 4.89 | 0.0210 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7439-95-4 | Magnesium | 2130 | 1640 | 5000 | | 3). | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7439-96-5 | Manganese | 406 | 3.36 | 10.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | ET . | U | EPA 7470A | 2F25012 | 6/25/12 8:59 | | 7440-02-0 | Nickel | 1.78 | 0.00910 | 1.00 | [1] | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-09-7 | Potassium | | 1470 | 5000 | | IJ | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7782-49-2 | Selenium | 0.230 | 0.0900 | 5.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-22-4 | Silver | 0.0203 | 0.00800 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-23-5 | Sodium | | 1840 | 5000 | | บ | EPA 6010C | 2F19018 | 6/19/12 22:01 | | 7440-28-0 | Thallium | 0,0219 | 0.0150 | 1.00 | le je | j | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-62-2 | Vanadium | 0.250 | 0,0560 | 5.00 | | j | EPA 6020A | 2F26008 | 6/25/12 13:12 | | 7440-66-6 | Zinc | 181 | 10.2 | 30.0 | Ti E | | EPA 6010C | 2F19018 | 6/19/12 22:01 | ADIT275-06062012-1430 Client: URS OPERATING SERVICES SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT | CAS NO. | Analyté | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 11500 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:08 | | 7440-36-0 | Antimony | | 0.130 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-38-2 | Arsenic | 3,69 | 0.700 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-39-3 | Barium | 4.81 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-41-7 | Beryllium | 4.46 | 0.165 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-43-9 | Cadmium | 95.8 | 0,0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-70-2 | Calcium | 492000 | 3450 | 10000 | Ext | D | EPA 6010C | 2F26011 | 6/26/12 12:24 | | 7440-47-3 | Chromium | | 0.340 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-48-4 | Cobalt | 106 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-50-8 | Copper | 17.5 | 0.600 | 10.0 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7439-89-6 | Iron | 94600 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:08 | | 7439-92-1 | Lead | 152 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7439-95-4 | Magnesium | 31300 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:08 | | 7439-96-5 | Manganesc | 27500 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:24 | | 7439-97-6 | Мегситу | | 0.0355 | 0.200 | | U | EPA 7470A | 2F25012 | 6/25/12 9:00 | | 7440-02-0 | Nickel | 72.6 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-09-7 | Potassium | 2070 | 1470 | 5000 | | J. | EPA 6010C | 2F19018 | 6/19/12 22:08 | | 7782-49-2 | Selenium | 3.97 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-22-4 | Silver | 0.118 | 0.0400 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-23-5 | Sodium | 8770 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:08 | | 7440-28-0 | Thallium | 0.222 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-62-2 | Vanadium | 3.08 | 0.280 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:19 | | 7440-66-6 | Zinc | 15600 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:08 | CC03CA-06052012-1355 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT</u> | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 17100 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:15 | | 7440-36-0 | Antimony | 2.08 | 0.130 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-38-2 | Arsenic | 50,5 | 0.700 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-39-3 | Barium | 16.1 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-41-7 | Beryllium | 15.9 | 0.165 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-43-9 | Cadmíum | 54.9 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-70-2 | Calcium | 445000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:46 | | 7440-47-3 | Chromium | 1.23 | 0.340 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-48-4 | Cobalt | 89.1 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-50-8 | Соррег | 214 | 0.600 | 10.0 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7439-89-6 | Iron | 470000 | 69.4 | 200 | 1 | | EPA 6010C | 2F19018 | 6/19/12 22:15 | | 7439-92-1 | Lead | 1410 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7439-95-4 | Magnesium | 25900 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:15 | | 7439-96-5 | Manganese | 35000 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:46 | | 7439-97-6 | Mercury | 0.368 | 0.0355 | 0.200 | | | EPA 7470A | 2F25012 | 6/25/12 9:02 | | 7440-02-0 | Nickel | 60.7 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-09-7 | Potassium | 1950 | 1470 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:15 | | 7782-49-2 | Selenium | 5.01 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-22-4 | Silver | 5.97 | 0.0400 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-23-5 | Sodium | 8250 | 1840 | 5000 | 1.1 | | EPA 6010C | 2F19018 | 6/19/12 22:15 | | 7440-28-0 | Thallium | 0.189 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-62-2 | Vanadium | 49.5 | 0.280 | 25.0 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:21 | | 7440-66-6 | Zinc | 15800 | 10.2 | 30,0 | | | EPA 6010C | 2F19018 | 6/19/12 22:15 | #### AVALTOIS DATA SHEET CC03D-06052012-1740 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY T</u> Lab ID: 1206008-10 % Solid: Matrix: Water Sampled: <u>06/05/12</u> Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 21700 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22: | | 7440-36-0 | Antimony | 3.15 | 0.130 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-38-2 | Arsenic | 91.2 | 0.700 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-39-3 | Barium | 31.2 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-41-7 | Beryllium | 20.8 | 0.165 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-43-9 | Cadmium | 82.8 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-70-2 | Calcium | 432000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:5 | | 7440-47-3 | Chromium | 2.77 | 0.340 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-48-4 | Cobalt | 87.4 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-50-8 | Соррет | 348 | 0.600 | 10.0 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7439-89-6 | bon | 691000 | 69.4 | 200 | 11 | | EPA 6010C | 2F19018 | 6/19/12 22:2 | | 7439-92-1 | Lead | 2330 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7439-95-4 | Magnesium | 25100 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:2 | | 7439-96-5 | Manganese |
33800 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 12:5 | | 7439-97-6 | Метсигу | 0.667 | 0.0355 | 0.200 | Eiel | | EPA 7470A | 2F25012 | 6/25/12 9:04 | | 7440-02-0 | Nickel | 59.3 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:23 | | 7440-09-7 | Potassium | 2250 | 1470 | 5000 | ME | 7 | EPA 6010C | 2F19018 | 6/19/12 22:22 | | 7782-49-2 | Selenium | 5.90 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:22 | | 7440-22-4 | Silver | 9.89 | 0.0400 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:22 | | 7440-23-5 | Sodium | 8000 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:22 | | 7440-28-0 | Thallium | 0.203 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:22 | | 1440-62-2 | Vanadium | 70.0 | 0.280 | 25.0 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:22 | | 7440-66-6 | Zinc | 15400 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:22 | ompu A Division Of Liberty Analytical Corp. CC03D-06062012-1023 Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT</u> Lab ID: 1206008-11 % Solid: Matrix: Water Sampled: 06/06/12 Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-------------------|--------|-------|------|------|-----------|----------|----------------| | 7429-90-5 | Aluminum | 9560 | 78,2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:30 | | 7440-36-0 | Antimony | 0.599 | 0.130 | 10.0 | 137 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-38-2 | Arsenic | 14.1 | 0.700 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-39-3 | Barium | 26.4 | 0.500 | 50.0 | 13.1 | i,D. | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-41-7 | Beryllium | 8.42 | 0.165 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-43-9 | Cadmium | [®] 59.3 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-70-2 | Calcium | 447000 | 3450 | 10000 | 2 | D D | EPA 6010C | 2F26011 | 6/26/12 13:00 | | 7440-47-3 | Chromium | 0.915 | 0,340 | 10,0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-48-4 | Cobalt | 97.7 | 0.0475 | 5.00 | 5 | Eq. | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-50-8 | Соррег | 140 | 0.600 | 10.0 | 5 | Md | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7439-89-6 | Iron | 132000 | 69.4 | 200 | Fall | | EPA 6010C | 2F19018 | 6/19/12 22:30 | | 7439-92-1 | Lead | 361 | 0.105 | 5.00 | 5 | Ep. | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7439-95-4 | Magnesium | 26100 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12, 22:30 | | 7439-96-5 | Manganese | 35300 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 13:00 | | 7439-97-6 | Mercury | 0.0430 | 0.0355 | 0.200 | 1 . | | EPA 7470A | 2F25012 | 6/25/12 9:06 | | 7440-02-0 | Nickel | 65.8 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-09-7 | Potassium | 2100 | 1470 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:30 | | 7782-49-2 | Selenium | 3,93 | 0.450 | 25.0 | 5 | I, D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-22-4 | Silver | 1.75 | 0.0400 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-23-5 | Sodium | 8240 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:30 | | 7440-28-0 | Thallium | 0.169 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-62-2 | Vanadium | 9,69 | 0.280 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:24 | | 7440-66-6 | Zinc | 14800 | 10.2 | 30.0 | Fill | | EPA 6010C | 2F19018 | 6/19/12 22:30 | CCFB-06062012-1043 Client: URS OPERATING SERVICES SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY T Lab ID: 1206008-12 % Solid: Matrix: Water Sampled: <u>06/06/12</u> Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 4670 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:3 | | 7440-36-0 | Antimony | | 0.130 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-38-2 | Arsenic | 1.78 | 0.700 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-39-3 | Barium | 12.5 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-41-7 | Beryllium | 4,49 | 0.165 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-43-9 | Cadmium | 39.3 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2 | | 7440-70-2 | Calcium | 455000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 13:0 | | 7440-47-3 | Chromium | 0.518 | 0.340 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:2: | | 7440-48-4 | Cobalt | 97.7 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:2: | | 7440-50-8 | Copper | 8.46 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7439-89-6 | Iron | 88300 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:37 | | 7439-92-1 | Lead | 39.1 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7439-95-4 | Magnesium | 25500 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:37 | | 7439-96-5 | Manganese | 35500 | 6.72 | 20.0 | 2 . | D | EPA 6010C | 2F26011 | 6/26/12 13:07 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | Ū | EPA 7470A | 2F25012 | 6/25/12 9:07 | | 7440-02-0 | Nickel | 65.4 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7440-09-7 | Potassium | 1840 | 1470 | 5000 | | 13 | EPA 6010C | 2F19018 | 6/19/12 22:37 | | 7782-49-2 | Selenium | 2.82 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7440-22-4 | Silver | 0.0713 | 0.0400 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7440-23-5 | Sodium | 8030 | 1840 | 5000 | 11 | | EPA 6010C | 2F19018 | 6/19/12 22:37 | | 7440-28-0 | Thallium | 0.140 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7440-62-2 | Vanadium | 0.478 | 0.280 | 25.0 | 5.8 | J,D | EPA 6020A | 2F26008 | 6/25/12 15:25 | | 7440-66-6 | Zinc | 13700 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:37 | CCGS-06062012-1004 Client: URS OPERATING SERVICES SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY TA Lab ID: 1206008-13 % Solid: Matrix: Water Sampled: 06/06/12 Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|---------|-------|-------|------------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 2160 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:4 | | 7440-36-0 | Antimony | 0.104 | 0.0260 | 2.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:1- | | 7440-38-2 | Arsenic | 0.939 | 0.140 | 1.00 | | J | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-39-3 | Barium | 17.4 | 0.100 | 10.0 | | | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-41-7 | Beryllium | 0.734 | 0.0330 | 1.00 | Field | 1 | EPA 6020A | 2F26008 | 6/25/12 13:1 | | 7440-43-9 | Cadmium | 9.31 | 0.0110 | 1.00 | MA | | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-70-2 | Calcium | 58600 | 1720 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:4/ | | 7440-47-3 | Chromium | 0.337 | 0.0680 | 2.00 | 1 | J | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-48-4 | Cobalt | 9.14 | 0.00950 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-50-8 | Copper | 157 | 0.120 | 2.00 | 1 | | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7439-89-6 | Iron | 6220 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:44 | | 7439-92-1 | Lead | 26,4 | 0.0210 | 1.00 | ETE | | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7439-95-4 | Magnesium | 4840 | 1640 | 5000 | 1 | J | EPA 6010C | 2F19018 | 6/19/12 22:44 | | 7439-96-5 | Manganese | 3290 | 3.36 | 10.0 | FIE! | | EPA 6010C | 2F19018 | 6/19/12 22:44 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | ិប | EPA 7470A | 2F25012 | 6/25/12 9:09 | | 7440-02-0 | Nickel | 8.08 | 0.00910 | 1.00 | 1.15 | | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-09-7 | Potassium | | 1470 | 5000 | ET. | Ü | EPA 6010C | 2F19018 | 6/19/12 22:44 | | 7782-49-2 | Selenium | 0.784 | 0.0900 | 5.00 | 1.1 | j | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-22-4 | Silver | 0.175 | 0.00800 | 1.00 | I | J | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-23-5 | Sodium | | 1840 | 5000 | 1 | ÷υ. | EPA 6010C | 2F19018 | 6/19/12 22:44 | | 7440-28-0 | Thallium | 0.0296 | 0.0150 | 1.00 | E1 S | J | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-62-2 | Vanadium | 0.410 | 0.0560 | 5,00 | 1 1 | - 1 | EPA 6020A | 2F26008 | 6/25/12 13:14 | | 7440-66-6 | Zinc | 2070 | 10.2 | 30.0 | 1 | | EPA 6010C | 2F19018 | 6/19/12 22:44 | CCGS-06062012-1255 Client: URS OPERATING SERVICES SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT Lab ID: 1206008-14 % Solid: Matrix: Water Sampled: 06/06/12 Received: 06/12/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|---------|-------|------|-----|-----------|----------|---------------| | 7429-90-5 | Aluminum | 2440 | 78.2 | 200 | 41.5 | | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7440-36-0 | Antimony | 0.120 | 0.0260 | 2.00 | | 1 | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-38-2 | Arsenic | 1.27 | 0.140 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-39-3 | Barium | 18.3 | 0.100 | 10.0 | t | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-41-7 | Beryllium | 0.954 | 0.0330 | 1.00 | | 1 | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-43-9 | Cadmium | 9.84 | 0.0110 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-70-2 | Calcium | 70800 | 1720 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7440-47-3 | Chromium | 0.720 | 0.0680 | 2.00 | | 1 | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-48-4 | Cobalt | 11.4 | 0.00950 | 1.00 | | (V) | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-50-8 | Copper | 155 | 0.120 | 2.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7439-89-6 | Iron | 11200 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7439-92-1 | Lead | 35,4 | 0.0210
| 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7439-95-4 | Magnesium | 5570 | 1640 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7439-96-5 | Manganese | 4200 | 3.36 | 10.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7439-97-6 | Mercury | | 0.0355 | 0,200 | | U | EPA 7470A | 2F25012 | 6/25/12 9:11 | | 7440-02-0 | Nickel | 9,49 | 0.00910 | 1.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-09-7 | Potassium | | 1470 | 5000 | | U | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7782-49-2 | Selenium | 0.752 | 0.0900 | 5.00 | | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-22-4 | Silver | 0.233 | 0.00800 | 1.00 | 1 | 1 | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-23-5 | Sodium | 2100 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:51 | | 7440-28-0 | Thallium | 0.0372 | 0.0150 | 1.00 | E L | j | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-62-2 | Vanadium | 0.664 | 0.0560 | 5.00 | BB | | EPA 6020A | 2F26008 | 6/25/12 13:15 | | 7440-66-6 | Zinc | 2460 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:51 | CC03CA-061412-1206t Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206008</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT</u> Lab ID: 1206008-15 % Solid: Matrix: Water Sampled: 06/14/12 Received: 06/16/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|-------------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum | 4300 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:59 | | 7440-36-0 | Antimony | | 0.130 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-38-2 | Arsenic | 3.29 | 0.700 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-39-3 | Barium | 13.0 | 0.500 | 50.0 | - 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-41-7 | Beryllium | 6.78 | 0.165 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-43-9 | Cadmium | 33.1 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-70-2 | Calcium | 438000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 13:15 | | 7440-47-3 | Chromium | 0.381 | 0.340 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-48-4 | Cobalt | 96.9 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-50-8 | Copper | 8.36 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7439-89-6 | Iron | 91400 | 69.4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 22:59 | | 7439-92-1 | Lead | 82.7 | 0.105 | 5.00 | 3 | D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7439-95-4 | Magnesium | 25300 | 1640 | 5000 | 1514 | | EPA 6010C | 2F19018 | 6/19/12 22:59 | | 7439-96-5 | Manganese | 34300 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 13:15 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | ט | EPA 7470A | 2F25012 | 6/25/12 9:17 | | 7440-02-0 | Nickel | 70.2 | 0.0455 | 5.00 | 5. | D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-09-7 | Potassium | 1820 | 1470 | 5000 | | J | EPA 6010C | 2F19018 | 6/19/12 22:59 | | 7782-49-2 | Selenium | 3.12 | 0.450 | 25.0 | - 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-22-4 | Silver | | 0.0400 | 5.00 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-23-5 | Sodium | 8240 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 22:59 | | 7440-28-0 | Thallium | 0.150 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-62-2 | Vanadium | 0.285 | 0.280 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 15:27 | | 7440-66-6 | Zinc | 13900 | 10.2 | 30.0 | | | EPA 6010C | 2F19018 | 6/19/12 22:59 | CC03D-061412-1220t Client: URS OPERATING SERVICES SDG: 1206008 Project: 36548983/PR10141/OS-12-P-10141-WATER-14 DAY TAT Lab ID: 1206008-16 % Solid: Matrix: Water Sampled: 06/14/12 Received: 06/16/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL. | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------|-----------------|--------|-------|------|--------------|-----------|----------|----------------| | 7429-90-5 | Aluminum | 4030 | 78.2 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 19:58 | | 7440-36-0 | Antimony | | 0.130 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-38-2 | Arsenic | 4.13 | 0.700 | 5.00 | 5 | 1, D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-39-3 | Barium | 13,6 | 0,500 | 50.0 | - 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-41-7 | Beryllium | 6.92 | 0.165 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-43-9 | Cadmium | \$3.1 | 0.0550 | 5.00 | 5 | Ď | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-70-2 | Calcium | 443000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F26011 | 6/26/12 11:19 | | 7440-47-3 | Chromium | 0.392 | 0.340 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-48-4 | Cobalt | 94.4 | 0.0475 | 5,00 | - 5 | D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-50-8 | Copper | - 11A | 0.600 | 10,0 | 3 | D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7439-89-6 | fron | 85100 | 69,4 | 200 | | | EPA 6010C | 2F19018 | 6/19/12 19:58 | | 7439-92-1 | Lead | 103 | 0.105 | 5,00 | .5 | D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7439-95-4 | Magnesium | 23700 | 1640 | 5000 | t | | EPA 6010C | 2F19018 | 6/19/12 19:58 | | 7439-96-5 | Manganese | 34500 | 6.72 | 20.0 | 2 | D to | EPA 6010C | 2F26011 | 6/26/12 11:19 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | 14. | U | EPA 7470A | 2F25012 | 6/25/12 8:37 | | 7440-02-0 | Nickel | 63,5 | 0.0455 | 5,00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-09-7 | Potassium | (750 | 1470 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 19:58 | | 7782-49-2 | Selenium | 2.84 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-22-4 | Silver | 0.0444 | 0.0400 | 5.00 | 5 | 7), 5 | EPA 6020A | ZF26008 | 6/25/12 14:58 | | 7440-23-5 | Sodium | 7650 | 1840 | 5000 | | | EPA 6010C | 2F19018 | 6/19/12 19:58 | | 7440-28-0 | Thallium | 0,159 | 0,0750 | 5.00 | 5 | 5), p | EPA 6020A | 2F26008 | 6/25/12 14:58 | | 7440-62-2 | Vanadium | 0.483 | 0.280 | 25.0 | 5 | J, D | EPA 6020A | 2726008 | 6/25/12, 14:58 | | 7440-66-6 | Zinc | 13100 | 10.2 | 30.0 | | h ar in | EPA 6010C | 2F19018 | 6/19/12 19:58 | # CompuChem a division of Liberty Analytical Corporation ### **INORGANIC DATA REPORTING QUALIFIERS** On the Form I, under the column labeled "Q" for qualifier, each result is flagged with the specific data reporting qualifiers listed below, as appropriate. The qualifiers used are: - U: This flag indicates the compound was analyzed for, not detected and is reported as less than the Method Detection Limit (MDL) (or as defined by the client). The Reporting Limit (RL), or Limit of Quantitation (LOQ), and the MDL will be adjusted to reflect any dilution or concentration of the sample and, for soils, the percent moisture. - J: This flag indicates the reported result is an estimated value. The flag is used when an analyte is detected and the result is less than the adjusted RL/LOQ but equal to or greater than the MDL. - Q: This flag denotes that one or more quality control criteria have failed (e.g., LCS recovery, Continuing Calibration Verification, CCV, and interference check standards for ICP-AES/ICP-MS) and reanalyses can't be performed. The Q flag is applied to all specific analyte(s) in all samples associated with the failed quality control criteria. - B: This flag is used when the analyte is found in the associated method or calibration blank as well as in the sample. It indicates probable blank contamination and warns the data user to take appropriate action. The combination of flags BU or UB is not an allowable policy. Blank contaminants are flagged B only when they are detected in the sample. - D: This flag is applied to an analyte when the reported result is based on a dilution. - X/Y/Z: Other specific flags may be required to properly define the results. If used, the flags will be fully described in the SDG Narrative. The laboratory-defined flags are limited to X, Y, and Z. The extensions: D, S, SD, L, and A are added to the end of the Client ID and represent the following: D - Matrix Duplicate S - Matrix Spike SD - Matrix Spike Duplicate L-Serial Dilution A - Post Digestion Spike Revision 0 (11-09-2010) | Location | Matrix Analysis | Analyte | Result | Units | Lab Qual | ific Date_Collected | |----------|---------------------|--------------|--------|-------|----------|---------------------| | A72 | Surface WalCPMS Tot | . Antimony | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | Arsenic | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | Barium | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | Cadmium | 0.957 | ug/L | JD | 5/15/2012 | | A72 | Surface WalCPMS Tot | Chromium | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | Cobalt | 1.57 | ug/L | D | 5/15/2012 | | A72 | Surface WalCPMS Tot | Copper | 12.2 | ug/L | D | 5/15/2012 | | A72 | Surface WalCPMS Tot | . Lead | 4.27 | ug/L | D | 5/15/2012 | | A72 | Surface WalCPMS Tot | . Nickel | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | . Selenium | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | . Silver | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Tot | . Thallium | 4.68 | ug/L | JD | 5/15/2012 | | A72 | Surface WalCPMS Tot | . Vanadium | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Aluminum | 701 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Beryllium | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Calcium | 30600 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Iron | 1280 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Magnesiun | 2350 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Manganes | 485 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Potassium | 546 | ug/L | j | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Sodium | 1510 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Strontium | 310 | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Tot | . Zinc | 292 | ug/L | | 5/15/2012 | | A72 | Surface WalCPMS
Dis | s Antimony | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Arsenic | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Barium | 17.2 | ug/L | | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Cadmium | 0.902 | ug/L | | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Chromium | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Cobalt | | ug/L | | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Copper | 4.36 | ug/L | | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Lead | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | s Nickel | 0.979 | ug/L | J | 5/15/2012 | | A72 | Surface WalCPMS Dis | | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPMS Dis | | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPOE Dis | | 32.4 | ug/L | j | 5/15/2012 | | A72 | Surface WalCPOE Dis | | | ug/L | U | 5/15/2012 | | A72 | Surface WalCPOE Dis | | 31000 | - | | 5/15/2012 | | A72 | Surface WalCPOE Dis | | | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Dis | _ | | _ | | 5/15/2012 | | A72 | Surface WalCPOE Dis | - | | ug/L | | 5/15/2012 | | A72 | Surface WalCPOE Dis | | | ug/L | j | 5/15/2012 | | A72 | Surface WalCPOE Dis | | 1550 | | | 5/15/2012 | | A72 | Surface WalCPOE Dis | | | ug/L | | 5/15/2012 | | A72 | Surface WalcPOE Dis | s. Zinc | 288 | ug/L | | 5/15/2012 | | A72 | Surface Wa WC - Alkali Total Alkali | 15.4 mg Ca | CO3 / L | 5/15/2012 | |-----|---------------------------------------|------------|---------|-----------| | A72 | Surface Wa WC - Anion Chloride | mg/L | U | 5/15/2012 | | A72 | Surface Wa WC - Anion Fluoride | 0.2 mg/L | | 5/15/2012 | | A72 | Surface Wa WC - Anion Nitrate/Nitrite | as N mg/L | U | 5/15/2012 | | A72 | Surface Wa WC - Anion Sulfate as S | 71.1 mg/L | | 5/15/2012 | | A72 | Surface Wa DM-Hardne Hardness | 87 mg/L | | 5/15/2012 | Source: U.S. EPA Scribe.net Upper Animas Database. | Location | Analysis | Analyte | Result | Units | Lab Qualific Date_ | Collected | |----------|-------------|-------------|--------|-------|--------------------|-----------| | CC18B | ICPMS Tot. | Antimony | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Arsenic | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Barium | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Cadmium | 8.31 | ug/L | D | 5/15/2012 | | CC18B | ICPMS Tot. | Chromium | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Cobalt | 10.6 | ug/L | D | 5/15/2012 | | CC18B | ICPMS Tot. | Copper | 176 | ug/L | D | 5/15/2012 | | CC18B | ICPMS Tot. | Lead | 14 | ug/L | D | 5/15/2012 | | CC18B | ICPMS Tot. | Nickel | 6.97 | ug/L | D | 5/15/2012 | | CC18B | ICPMS Tot. | Selenium | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Silver | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Thallium | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Tot. | Vanadium | | ug/L | U | 5/15/2012 | | CC18B | ICPOE Tot. | Aluminum | 2290 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | Beryllium | | ug/L | U | 5/15/2012 | | CC18B | ICPOE Tot. | | 64100 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | Iron | 7910 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | Magnesiun | 5030 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | Manganese | 4040 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | Potassium | 518 | ug/L | J | 5/15/2012 | | CC18B | ICPOE Tot. | Sodium | 1790 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | Strontium | 682 | ug/L | | 5/15/2012 | | CC18B | ICPOE Tot. | | 2980 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | Antimony | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Diss | Arsenic | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Diss | Barium | 13.6 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | Cadmium | 8.69 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | Chromium | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Diss | Cobalt | 10.5 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | Copper | 172 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | Lead | 7.98 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | Nickel | 6.96 | ug/L | | 5/15/2012 | | CC18B | ICPMS Diss | | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Diss | | | ug/L | U | 5/15/2012 | | CC18B | ICPMS Diss | | | ug/L | U | 5/15/2012 | | CC18B | | Vanadium | | ug/L | U | 5/15/2012 | | CC18B | | . Aluminum | 2090 | ug/L | | 5/15/2012 | | CC18B | ICPOE Diss. | | | ug/L | U | 5/15/2012 | | CC18B | ICPOE Diss. | | 62100 | _ | | 5/15/2012 | | CC18B | ICPOE Diss. | | 7070 | _ | | 5/15/2012 | | CC18B | | . Magnesiun | | _ | | 5/15/2012 | | CC18B | | . Manganese | | _ | | 5/15/2012 | | CC18B | | . Potassium | | ug/L | J | 5/15/2012 | | CC18B | ICPOE Diss. | | 1810 | _ | | 5/15/2012 | | CC18B | ICPOE Diss. | | | ug/L | | 5/15/2012 | | CC18B | ICPOE Diss. | . Zinc | 3010 | ug/L | | 5/15/2012 | | CC18B | WC - Alkali Total Alkalinity | mg CaCO3 | 3 _. U | 5/15/2012 | |-------|-------------------------------|----------|------------------|-----------| | CC18B | WC - Anion Chloride | mg/L | U | 5/15/2012 | | CC18B | WC - Anion Fluoride | 1.1 mg/L | | 5/15/2012 | | CC18B | WC - Anion Nitrate/Nitrite as | N mg/L | U | 5/15/2012 | | CC18B | WC - Anion Sulfate as S | 220 mg/L | | 5/15/2012 | | CC18B | DM-Hardne Hardness | 175 mg/L | | 5/15/2012 | CC18: upstream of South Fork, downstream of American Tunnel confluence. CC18B: Upstream of American Tunnel, downstream of North Fork. Source: U.S. EPA Scribe.net Upper Animas Database. Dissolved Metals Data CC03CA-061412-1206d Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206057</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER(DISS.)-14 DA'</u> Lab ID: 1206057-01 % Solid: Matrix: Water Sampled: 06/14/12 Received: 06/16/12 | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------------------|-----------------|--------|-------|------|------|-----------|----------|---------------| | 7429-90-5 | Aluminum (dissolved) | 4350 | 78.2 | 200 | 1 | | EPA 6010C | 2F28016 | 6/28/12 14:48 | | 7440-36-0 | Antimony (dissolved) | | 0.130 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-38-2 | Arsenic (dissolved) | 2.39 | 0.700 | 5.00 | 3 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-39-3 | Barium (dissolved) | 13,3 | 0.500 | 50.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-41-7 | Beryllium (dissolved) | 7.07 | 0.165 | 5.00 | 5. | D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-43-9 | Cadmium (dissolved) | 33.4 | 0.0550 | 5,00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-70-2 | Calcium (dissolved) | 443000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F28016 | 6/28/12 14:55 | | 7440-47-3 | Chromium (dissolved) | | 0.340 | 10,0 | 5. | U, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-48-4 | Cobalt (dissolved) | 90.9 | 0.0475 | 5.00 | 5 | ED H | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-50-8 | Copper (dissolved) | 6.63 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7439-89-6 | Iron (dissolved) | 90400 | 69.4 | 200 | | | EPA 6010C | 2F28016 | 6/28/12 14:48 | | 7439-92-1 | Lead (dissolved) | 14.3 | 0.105 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7439-95-4 | Magnesium (dissolved) | 26100 | 1640 | 5000 | | | EPA 6010C | 2F28016 | 6/28/12 14:48 | | 7439-96-5 | Manganese (dissolved) | 33700 | 6.72 | 20.0 | 2 | D | EPA 6010C | 2F28016 | 6/28/12 14:55 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | | U | EPA 7470Å | 2F25012 | 6/25/12 9:22 | | 7440-02-0 | Nickel (dissolved) | 61.0 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-09-7 | Potassium (dissolved) | 1900 | 1470 | 5000 | 1 | J | EPA 6010C | 2F28016 | 6/28/12 14:48 | | 7782-49-2 | Selenium (dissolved) | 2.04 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-22-4 | Silver (dissolved) | | 0.0400 | 5.00 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-23-5 | Sodium (dissolved) | 8350 | 1840 | 5000 | | | EPA 6010C | 2F28016 | 6/28/12 14:48 | | 7440-28-0 | Thallium (dissolved) | 0.154 | 0.0750 | 5,00 | 5.5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-62-2 | Vanadium (dissolved) | | 0.280 | 25.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 16:51 | | 7440-66-6 | Zinc (dissolved) | 14700 | 10.2 | 30.0 | | | EPA 6010C | 2F28016 | 6/28/12 14:48 | CC03D-061412-1220d Client: <u>URS OPERATING SERVICES</u> SDG: <u>1206057</u> Project: <u>36548983/PR10141/OS-12-P-10141-WATER(DISS.)-14 DA</u> | CAS NO. | Analyte | Conc.
(ug/L) | MDL | RL | D.F. | Q | Method | Sequence | Analyzed | |-----------|-----------------------|-----------------|--------|-------|------|---------|-----------|----------|---------------| | 7429-90-5 | Aluminum (dissolved) | 2360 | 78.2 | 200 | | | EPA 6010C | 2F28016 | 6/28/12 13:14 | | 7440-36-0 | Antimony (dissolved) | | 0.130 | 10.0 | 5 | U,D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-38-2 | Arsenic (dissolved) | 2.16 | 0.700 | 5.00 | 5 | Ĵ, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-39-3 | Barium (dissolved) | 12.5 | 0.500 | 50.0 | 3 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-41-7 | Beryllium (dissolved) | 5,62 | 0.165 | 5,00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-43-9 | Cadmium (dissolved) | 30.9 | 0.0550 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-70-2 | Calcium (dissolved) | 446000 | 3450 | 10000 | 2 | D | EPA 6010C | 2F28016 | 6/28/12 13:57 | | 7440-47-3 | Chromium (dissolved) | | 0.340 | 10.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-48-4 | Cobalt (dissolved) | 91.9 | 0.0475 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-50-8 | Copper (dissolved) | 5.94 | 0.600 | 10.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7439-89-6 | Iron (dissolved) | 86200 | 69.4 | 200 | | | EPA 6010C | 2F28016 | 6/28/12 13:14 | | 7439-92-1 | Lead (dissolved) | 3.17 | 0.105 | 5.00 | 5 | $J_i D$ | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7439-95-4 | Magnesium (dissolved) | 25700 | 1640 | 5000 | | | EPA 6010C | 2F28016 | 6/28/12 13:14 | | 7439-96-5 | Manganese (dissolved) | 34100 | 6.72 | 20,0 |
2 | D | EPA 6010C | 2F28016 | 6/28/12 13:57 | | 7439-97-6 | Mercury | | 0.0355 | 0.200 | ji | U | EPA 7470A | 2F25012 | 6/25/12 9:24 | | 7440-02-0 | Nickel (dissolved) | 62.1 | 0.0455 | 5.00 | 5 | D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-09-7 | Potassium (dissolved) | 1850 | 1470 | 5000 | | J. | EPA 6010C | 2F28016 | 6/28/12 13:14 | | 7782-49-2 | Selenium (dissolved) | 2.36 | 0.450 | 25.0 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-22-4 | Silver (dissolved) | | 0.0400 | 5.00 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-23-5 | Sodium (dissolved) | 8220 | 1840 | 5000 | | | EPA 6010C | 2F28016 | 6/28/12 13:14 | | 7440-28-0 | Thallium (dissolved) | 0,153 | 0.0750 | 5.00 | 5 | J, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-62-2 | Vanadium (dissolved) | | 0,280 | 25.0 | 5 | U, D | EPA 6020A | 2F26008 | 6/25/12 16:41 | | 7440-66-6 | Zinc (dissolved) | 14500 | 10,2 | 30,0 | | | EPA 6010C | 2F28016 | 6/28/12 13:14 |